962 resultados para Interleukin-1 Receptor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been recently shown (Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, et al. 2006. J. Exp. Med. 203:1693-1700.) that the expression of interleukin (IL) 7 receptor (R) alpha discriminates between two distinct CD4 T cell populations, both characterized by the expression of CD25, i.e. CD4 regulatory T (T reg) cells and activated CD4 T cells. T reg cells express low levels of IL-7Ralpha, whereas activated CD4 T cells are characterized by the expression of IL-7Ralpha(high). We have investigated the distribution of these two CD4 T cell populations in 36 subjects after liver and kidney transplantation and in 45 healthy subjects. According to a previous study (Demirkiran, A., A. Kok, J. Kwekkeboom, H.J. Metselaar, H.W. Tilanus, and L.J. van der Laan. 2005. Transplant. Proc. 37:1194-1196.), we observed that the T reg CD25(+)CD45RO(+)IL-7Ralpha(low) cell population was reduced in transplant recipients (P < 0.00001). Interestingly, the CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population was significantly increased in stable transplant recipients compared with healthy subjects (P < 0.00001), and the expansion of this cell population was even greater in patients with documented humoral chronic rejection compared with stable transplant recipients (P < 0.0001). The expanded CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population contained allospecific CD4 T cells and secreted effector cytokines such as tumor necrosis factor alpha and interferon gamma, thus potentially contributing to the mechanisms of chronic rejection. More importantly, CD4(+)IL-7Ralpha(+)and CD25(+)IL-7Ralpha(+) cells were part of the T cell population infiltrating the allograft of patients with a documented diagnosis of chronic humoral rejection. These results indicate that the CD4(+)CD25(+)IL-7Ralpha(+) cell population may represent a valuable, sensitive, and specific marker to monitor allospecific CD4 T cell responses both in blood and in tissues after organ transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations of G protein-coupled receptors (GPCR) can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The alpha(1B)adrenoceptor was the first GPCR in which point mutations were shown to trigger receptor activation. This article briefly summarizes some of the findings reported in the last several years on constitutive activity of the alpha(1)adrenoceptor subtypes, the location where mutations have been found in the receptors, the spontaneous activity of native receptors in recombinant as well as physiological systems. In addition, it will highlight how the analysis of the pharmacological and molecular properties of the constitutively active adrenoceptor mutants provided an important contribution to our understanding of the molecular mechanisms underlying the mechanism of receptor activation and inverse agonism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a progressive white matter disease with a wide range of clinical symptoms including dementia, behavioral changes, seizures, pyramidal signs, ataxia, and parkinsonism.(1-3) Affected individuals develop symptoms in their early 40s with an average survival time of 10 years. HDLS is inherited as an autosomal dominant trait. Recently, mutations in the colony-stimulating factor 1 receptor gene (CSF-1R) were identified as the genetic cause of HDLS.(4) White matter lesions, easily demonstrated on MRI studies, involve predominantly the frontal lobes and corpus callosum with subsequent cortical atrophy. MRI abnormalities are present prior to symptom onset.(5,6) Histopathology shows widespread myelin and axon destruction with axonal dilations termed spheroids, as well as pigmented macrophages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD. METHODS: We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed. RESULTS: We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R. CONCLUSIONS: We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Inflammasome activation with the production of IL-1 beta received substantial attention recently in inflammatory diseases. However, the role of inflammasome in the pathogenesis of asthma is not clear. Using an adjuvant-free model of allergic lung inflammation induced by ovalbumin (OVA), we investigated the role of NLRP3 inflammasome and related it to IL-1R1 signaling pathway.Methods: Allergic lung inflammation induced by OVA was evaluated in vivo in mice deficient in NLRP3 inflammasome, IL-1R1, IL-1 beta or IL-1 alpha. Eosinophil recruitment, Th2 cytokine, and chemokine levels were determined in bronchoalveolar lavage fluid, lung homogenates, and mediastinal lymph node cells ex vivo.Results: Allergic airway inflammation depends on NLRP3 inflammasome activation. Dendritic cell recruitment into lymph nodes, Th2 lymphocyte activation in the lung and secretion of Th2 cytokines and chemokines are reduced in the absence of NLRP3. Absence of NLRP3 and IL-1 beta is associated with reduced expression of other proinflammatory cytokines such as IL-5, IL-13, IL-33, and thymic stromal lymphopoietin. Furthermore, the critical role of IL-1R1 signaling in allergic inflammation is confirmed in IL-1R1-, IL-1 beta-, and IL-1 alpha-deficient mice.Conclusion: NLRP3 inflammasome activation leading to IL-1 production is critical for the induction of a Th2 inflammatory allergic response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photosynthetic tissues, the major food source of many invertebrates and vertebrates, are well defended. Many defence traits in leaves are controlled via the jasmonate signalling pathway in which jasmonate acts as a hormone by binding to a receptor to activate responses that lead to increased resistance to invertebrate folivores. We predicted that mutations in jasmonate synthesis might also increase the vulnerability of leaves to vertebrate folivores and tested this hypothesis using the Eastern Hermann's tortoise (Eurotestudo boettgeri) and an Arabidopsis thaliana (Brassicaceae) allene oxide synthase (aos) mutant unable to synthesize jasmonate. Tortoises preferred the aos mutant over the wild type (WT). Based on these results, we then investigated the effect of mutating jasmonate perception using a segregating population of the recessive A. thaliana jasmonate receptor mutant coronatine insensitive1-1 (coi1-1). Genotyping of these plants after tortoise feeding revealed that the homozygous coi1-1 receptor mutant was consumed more readily than the heterozygous mutant or the WT. Therefore, the plant's ability to synthesize or perceive jasmonate reduces feeding by a vertebrate herbivore. We also tested whether or not tortoise feeding behaviour was influenced by glucosinolates, the principal defence chemicals in Arabidopsis leaves with known roles in defence against many generalist insects. However, in contrast to what has been observed with such insects, leaves in which the levels of these compounds were reduced genetically were consumed at a similar rate to those of the WT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Interleukin-1 is pivotal in the pathogenesis of systemic juvenile idiopathic arthritis (JIA). We assessed the efficacy and safety of canakinumab, a selective, fully human, anti-interleukin-1β monoclonal antibody, in two trials. METHODS: In trial 1, we randomly assigned patients, 2 to 19 years of age, with systemic JIA and active systemic features (fever; ≥2 active joints; C-reactive protein, >30 mg per liter; and glucocorticoid dose, ≤1.0 mg per kilogram of body weight per day), in a double-blind fashion, to a single subcutaneous dose of canakinumab (4 mg per kilogram) or placebo. The primary outcome, termed adapted JIA ACR 30 response, was defined as improvement of 30% or more in at least three of the six core criteria for JIA, worsening of more than 30% in no more than one of the criteria, and resolution of fever. In trial 2, after 32 weeks of open-label treatment with canakinumab, patients who had a response and underwent glucocorticoid tapering were randomly assigned to continued treatment with canakinumab or to placebo. The primary outcome was time to flare of systemic JIA. RESULTS: At day 15 in trial 1, more patients in the canakinumab group had an adapted JIA ACR 30 response (36 of 43 [84%], vs. 4 of 41 [10%] in the placebo group; P<0.001). In trial 2, among the 100 patients (of 177 in the open-label phase) who underwent randomization in the withdrawal phase, the risk of flare was lower among patients who continued to receive canakinumab than among those who were switched to placebo (74% of patients in the canakinumab group had no flare, vs. 25% in the placebo group, according to Kaplan-Meier estimates; hazard ratio, 0.36; P=0.003). The average glucocorticoid dose was reduced from 0.34 to 0.05 mg per kilogram per day, and glucocorticoids were discontinued in 42 of 128 patients (33%). The macrophage activation syndrome occurred in 7 patients; infections were more frequent with canakinumab than with placebo. CONCLUSIONS: These two phase 3 studies show the efficacy of canakinumab in systemic JIA with active systemic features. (Funded by Novartis Pharma; ClinicalTrials.gov numbers, NCT00889863 and NCT00886769.).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gout is an inflammatory arthritis caused by monosodium urate (MSU) crystal deposits in and around the joint. The formation of urinary calculi can also occur in gout, but are less common than arthritis. Gout usually presents with recurrent episodes of joint inflammation, which over time lead to tophus formation and joint destruction. In the last decade, significant advances have been made regarding not only the epidemiology and genetics of gout and hyperuricemia but also the mechanisms of inflammation and treatment of gout. In addition, knowledge concerning the key role of interleukin 1 (IL-1) has provided new therapeutic perspectives. However, the current management of gout is often suboptimal, with many Patienten either not receiving adequate treatment or being unable to tolerate existing treatments. New therapeutic agents provide interesting new options for Patienten with difficult-to-treat gouty arthritis.The English full-text version of this is available at SpringerLink (under "Supplemental").

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncontrolled endoplasmic reticulum (ER) stress responses are proposed to contribute to the pathology of chronic inflammatory diseases such as type 2 diabetes or atherosclerosis. However, the connection between ER stress and inflammation remains largely unexplored. Here, we show that ER stress causes activation of the NLRP3 inflammasome, with subsequent release of the pro-inflammatory cytokine interleukin-1β. This ER-triggered proinflammatory signal shares the same requirement for reactive oxygen species production and potassium efflux compared with other known NLRP3 inflammasome activators, but is independent of the classical unfolded protein response (UPR). We thus propose that the NLRP3 inflammasome senses and responds to ER stress downstream of a previously uncharacterized ER stress response signaling pathway distinct from the UPR, thus providing mechanistic insight to the link between ER stress and chronic inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Interleukin-1 is pivotal in the pathogenesis of systemic juvenile idiopathic arthritis (JIA). We assessed the efficacy and safety of canakinumab, a selective, fully human, anti-interleukin-1β monoclonal antibody, in two trials. METHODS: In trial 1, we randomly assigned patients, 2 to 19 years of age, with systemic JIA and active systemic features (fever; ≥2 active joints; C-reactive protein, >30 mg per liter; and glucocorticoid dose, ≤1.0 mg per kilogram of body weight per day), in a double-blind fashion, to a single subcutaneous dose of canakinumab (4 mg per kilogram) or placebo. The primary outcome, termed adapted JIA ACR 30 response, was defined as improvement of 30% or more in at least three of the six core criteria for JIA, worsening of more than 30% in no more than one of the criteria, and resolution of fever. In trial 2, after 32 weeks of open-label treatment with canakinumab, patients who had a response and underwent glucocorticoid tapering were randomly assigned to continued treatment with canakinumab or to placebo. The primary outcome was time to flare of systemic JIA. RESULTS: At day 15 in trial 1, more patients in the canakinumab group had an adapted JIA ACR 30 response (36 of 43 [84%], vs. 4 of 41 [10%] in the placebo group; P<0.001). In trial 2, among the 100 patients (of 177 in the open-label phase) who underwent randomization in the withdrawal phase, the risk of flare was lower among patients who continued to receive canakinumab than among those who were switched to placebo (74% of patients in the canakinumab group had no flare, vs. 25% in the placebo group, according to Kaplan-Meier estimates; hazard ratio, 0.36; P=0.003). The average glucocorticoid dose was reduced from 0.34 to 0.05 mg per kilogram per day, and glucocorticoids were discontinued in 42 of 128 patients (33%). The macrophage activation syndrome occurred in 7 patients; infections were more frequent with canakinumab than with placebo. CONCLUSIONS: These two phase 3 studies show the efficacy of canakinumab in systemic JIA with active systemic features. (Funded by Novartis Pharma; ClinicalTrials.gov numbers, NCT00889863 and NCT00886769.).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.