916 resultados para Interior of Farinha Podre
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
The Rosenberg family left the home September 1938
Resumo:
1) Ansicht des Innenhofes mit den Buerofenstern
Resumo:
This paper presents an algorithm for generating the Interior Medial Axis Transform (iMAT) of 3D objects with free-form boundaries. The algorithm proposed uses the exact representation of the part and generates an approximate rational spline description of the iMAT. The algorithm generates the iMAT by a tracing technique that marches along the object's boundary. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction points and the search for these junction points is done in an efficient way. The algorithm works for multiply-connected objects as well. Results of the implementation are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.
Resumo:
We consider an inverse elasticity problem in which forces and displacements are known on the boundary and the material property distribution inside the body is to be found. In other words, we need to estimate the distribution of constitutive properties using the finite boundary data sets. Uniqueness of the solution to this problem is proved in the literature only under certain assumptions for a given complete Dirichlet-to-Neumann map. Another complication in the numerical solution of this problem is that the number of boundary data sets needed to establish uniqueness is not known even under the restricted cases where uniqueness is proved theoretically. In this paper, we present a numerical technique that can assess the sufficiency of given boundary data sets by computing the rank of a sensitivity matrix that arises in the Gauss-Newton method used to solve the problem. Numerical experiments are presented to illustrate the method.
Resumo:
We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.
Resumo:
Error analysis for a stable C (0) interior penalty method is derived for general fourth order problems on polygonal domains under minimal regularity assumptions on the exact solution. We prove that this method exhibits quasi-optimal order of convergence in the discrete H (2), H (1) and L (2) norms. L (a) norm error estimates are also discussed. Theoretical results are demonstrated by numerical experiments.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
In this article, we propose a C-0 interior penalty ((CIP)-I-0) method for the frictional plate contact problem and derive both a priori and a posteriori error estimates. We derive an abstract error estimate in the energy norm without additional regularity assumption on the exact solution. The a priori error estimate is of optimal order whenever the solution is regular. Further, we derive a reliable and efficient a posteriori error estimator. Numerical experiments are presented to illustrate the theoretical results. (c) 2015Wiley Periodicals, Inc.
Resumo:
In this report, the issue related to nanoparticle (NP) agglomeration upon increasing their loading amount into metal-organic frameworks (MOFs) has been addressed by functionalization of MOFs with alkyne groups. The alkynophilicity of the Pd2+ (or other noble metals) ions has been utilized successfully for significant loading of Pd NPs into alkyne functionalized MOFs. It has been shown here that the size and loading amount of Pd NPs are highly dependent on the surface area and pore width of the MOFs. The loading amount of Pd NPs was increased monotonically without altering their size distribution on a particular MOF. Importantly, the distinct role of alkyne groups for Pe(2+) stabilization has also been demonstrated by performing a control experiment considering a MOF without an alkyne moiety. The preparation of NPs involved two distinct steps viz. adsorption of metal ions inside MOFs and reduction of metal ions. Both of these steps were monitored by microscopic techniques. This report also demonstrates the applicability of Pd@MOF NPs as extremely efficient heterogeneous catalysts for Heck-coupling and hydrogenation reactions of aryl bromides or iodides and alkenes, respectively.