871 resultados para Interactive Information Retrieval


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El proyecto ATTOS centra su actividad en el estudio y desarrollo de técnicas de análisis de opiniones, enfocado a proporcionar toda la información necesaria para que una empresa o una institución pueda tomar decisiones estratégicas en función a la imagen que la sociedad tiene sobre esa empresa, producto o servicio. El objetivo último del proyecto es la interpretación automática de estas opiniones, posibilitando así su posterior explotación. Para ello se estudian parámetros tales como la intensidad de la opinión, ubicación geográfica y perfil de usuario, entre otros factores, para facilitar la toma de decisiones. El objetivo general del proyecto se centra en el estudio, desarrollo y experimentación de técnicas, recursos y sistemas basados en Tecnologías del Lenguaje Humano (TLH), para conformar una plataforma de monitorización de la Web 2.0 que genere información sobre tendencias de opinión relacionadas con un tema.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este artículo se presenta un método para recomendar artículos científicos teniendo en cuenta su grado de generalidad o especificidad. Este enfoque se basa en la idea de que personas menos expertas en un tema preferirían leer artículos más generales para introducirse en el mismo, mientras que personas más expertas preferirían artículos más específicos. Frente a otras técnicas de recomendación que se centran en el análisis de perfiles de usuario, nuestra propuesta se basa puramente en el análisis del contenido. Presentamos dos aproximaciones para recomendar artículos basados en el modelado de tópicos (Topic Modelling). El primero de ellos se basa en la divergencia de tópicos que se dan en los documentos, mientras que el segundo se basa en la similitud que se dan entre estos tópicos. Con ambas medidas se consiguió determinar lo general o específico de un artículo para su recomendación, superando en ambos casos a un sistema de recuperación de información tradicional.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La gran cantidad de información disponible en Internet está dificultando cada vez más que los usuarios puedan digerir toda esa información, siendo actualmente casi impensable sin la ayuda de herramientas basadas en las Tecnologías del Lenguaje Humano (TLH), como pueden ser los recuperadores de información o resumidores automáticos. El interés de este proyecto emergente (y por tanto, su objetivo principal) viene motivado precisamente por la necesidad de definir y crear un marco tecnológico basado en TLH, capaz de procesar y anotar semánticamente la información, así como permitir la generación de información de forma automática, flexibilizando el tipo de información a presentar y adaptándola a las necesidades de los usuarios. En este artículo se proporciona una visión general de este proyecto, centrándonos en la arquitectura propuesta y el estado actual del mismo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the article relevance of system development for subject search using computational linguistics is considered. The basic principles of system functioning are defined. The principle of grammar development for information retrieval from the partially structured text in a natural language is considered. The ranging principle of results of information search is defined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bibliography: p. 95.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Written as supplementary material for a course in data structures given by the Dept. of Computer Science of the University of Illinois at Urbana-Champaign, during the second semester of the 1970-71 academic year"--Leaf 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"June 30, 1987."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Made up of resumés and indexes of documents [of educational significance] ... numbered sequentially with ED prefixes and current Office of Education research projects [with EP prefixes]".

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se presenta el desarrollo de una interface de recuperación de información para catálogos en línea de acceso público (plataforma CDS/ISIS), basada en el concepto de similaridad para generar los resultados de una búsqueda ordenados por posible relevancia. Se expresan los fundamentos teóricos involucrados, para luego detallar la forma en que se efectuó su aplicación tecnológica, explícita a nivel de programación. Para finalizar se esbozan los problemas de implementación según el entorno

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semantic data models provide a map of the components of an information system. The characteristics of these models affect their usefulness for various tasks (e.g., information retrieval). The quality of information retrieval has obvious important consequences, both economic and otherwise. Traditionally, data base designers have produced parsimonious logical data models. In spite of their increased size, ontologically clearer conceptual models have been shown to facilitate better performance for both problem solving and information retrieval tasks in experimental settings. The experiments producing evidence of enhanced performance for ontologically clearer models have, however, used application domains of modest size. Data models in organizational settings are likely to be substantially larger than those used in these experiments. This research used an experiment to investigate whether the benefits of improved information retrieval performance associated with ontologically clearer models are robust as the size of the application domains increase. The experiment used an application domain of approximately twice the size as tested in prior experiments. The results indicate that, relative to the users of the parsimonious implementation, end users of the ontologically clearer implementation made significantly more semantic errors, took significantly more time to compose their queries, and were significantly less confident in the accuracy of their queries.