959 resultados para Insulin signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Molecular Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a trade policy model, where the costs of the home firm are private information but can be signaled through the output levels of the firm to a foreign competitor and a home policymaker. We compute the separating equilibrium and the Bayesian Nash equilibrium, and we compare the subsidies, firms’ expected profits and home government’s welfare in both equilibria, for different values of the own price effect parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: As células eucarióticas evoluíram um sistema de sinalização complexo que lhes permite responder aos sinais extracelulares e intracelulares. Desta forma, as vias de sinalização são essenciais para a sobrevivência da célula e do organismo, uma vez que regulam processos fundamentais, tais como o desenvolvimento, o crescimento, a imunidade, e a homeostase dos tecidos. A via de transdução de sinal Hedgehog (Hh) envolve o receptor Patched1 (Ptch1), que tem um efeito inibidor sobre a proteína Smoothened (Smo) na ausência dos seus ligandos, as proteínas Sonic hedgehog (Shh). Estas proteínas são reguladores fundamentais do desenvolvimento embrionário, como ilustrado pelas malformações drásticas observadas em embriões humanos e de murganho com perturbações da transdução de sinal da via Hh e que incluem polidactilia, defeitos craniofaciais e malformações ósseas. Igualmente importantes são as consequências da ativação inapropriada da via de sinalização Hh na formação de tumores. Curiosamente, os componentes desta via localizam-se nos cílios primários. Além disso, demonstrou-se que esta localização é crucial para a sinalização através da via Hh. Na presença dos ligandos, Ptch1 é internalizado e destinado a degradação ou sequestrado num compartimento da célula de onde não pode desempenhar o seu papel inibitório. A proteína Arl13b é uma pequena GTPase pertencente à família Arf/Arl da superfamília Ras de pequenas GTPases e foi implicada no síndrome de Joubert, uma ciliopatia caracterizada por ataxia congénita cerebelar, hipotonia, atrso mental e cardiopatia congénita. Murganhos deficientes para Arl13b, chamado hennin (hnn) morrem morrem prematuramente ao dia 13,5 de gestação (E13,5) e exibem anomalias morfológicas nos cílios que levam à interrupção da sinalização Hh. Além disso, a Arl13b está diretamente envolvida na regulação da via Hh, controlando a localização de vários componentes desta via nos cílios primários. Neste trabalho, mostramos que a Arl13b se localiza em circular dorsal ruffles (CDRs), que são estruturas de actina envolvidas em macropinocitose e internalização de recetores, e que regula a sua formação. Além disso, aprofundámos o conhecimento do processo de ativação da via de sinalização Hh, mostrando que as CDRs sequestram seletivamente e internalizam o recetor Ptch1. As CDRs formam-se minutos após ativação da via por ligandos Shh ou pelo agonista de Smo SAG e continuam a ser formadas a partir daí, sugerindo uma indução contínua da reorganização do citoesqueleto de actina quando a via está ativada. Observámos ainda que a inibição da formação de CDRs através do silenciamento de WAVE1, uma proteína necessária para a formação destas estruturas, resulta na diminuição da ativação da via de sinalização Hh. Além disso, o bloqueio da macropinocitose, que se segue ao fecho das CDRs, através do silenciamento de uma proteína necessária para a cisão de macropinossomas, nomeadamente a proteína BARS, tem um efeito semelhante. Estes resultados sugerem que as CDRs e a macropinocitose são necessárias para a ativação da via de sinalização Hh e indicam que esta via de internalização controla os níveis de sinal Hh. Durante o desenvolvimento, as células proliferativas dependem do cílio primário para a transdução de várias vias de sinalização. A via Hh induz a diferenciação do músculo cardíaco. Por conseguinte, os murganhos deficientes na via de sinalização Hh exibem uma variedade de defeitos de lateralidade, incluindo alteração do looping do coração, como pode ser visto em murganhos deficientes para Arl13b. Por conseguinte, investigámos o papel da Arl13b no desenvolvimento do coração. Mostramos que a Arl13b é altamente expressa no coração de embriões de murganho e de murganhos adultos ao nível do mRNA e da proteína. Além disso, o perfil de distribuição da Arl13b no coração segue o dos cílios primários, que são essenciais para o desenvolvimento cardíaco. Corações de murganhos hnn no estadio E12,5 mostram um canal átrio-ventricular aberto, espessamento da camada compacta ventricular e aumento do índice mitótico no ventrículo esquerdo. Além disso, um atraso de 1 a 2 dias no desenvolvimento é observado em corações de murganhos hnn, quando comparados com controlos selvagens no estadio E13,5. Assim, estes resultados sugerem que a Arl13b é necessária para o desenvolvimento embrionário do coração e que defeitos cardíacos podem contribuir para a letalidade embrionária de murganhos hnn. Em suma, foi estabelecido um novo mecanismo para a regulação dos níveis de superfície do recetor Ptch1, que envolve a remodelação do citoesqueleto de actina e a formação de CDRs após a ativação da via de sinalização Hh. Este mecanismo permite um feedback negativo que evita a repressão excessiva da via através da remoção de Ptch1 da superfície da célula. Além disso, determinou-se que uma mutação de perda de função na Arl13b causa defeitos cardíacos durante o desenvolvimento, possivelmente relacionados com a associação dos defeitos em cílios primários e na sinalização Hh, existentes em murganhos deficientes para Arl13b. A via de sinalização Hh tem tido um papel central entre as vias de sinalização, uma vez que a sua regulação é crucial para o funcionamento apropriada da célula. Assim, a descoberta de um novo mecanismo de tráfego através de macropinocitose e CDRs que controla a ativação e repressão da via de sinalização Hh traz novas perspetivas de como esta via pode ser regulada e pode ainda conduzir à identificação de novos alvos e estratégias terapêuticas. --------------------ABSTRACT: Eukaryotic cells have evolved a complex signaling system that allows them to respond to extracellular and intracellular cues. Signaling pathways are essential for cell and organism survival, since they regulate fundamental processes such as development, growth, immunity, and tissue homeostasis. The Hedgehog (Hh) pathway of signal transduction involves the receptor Patched1 (Ptch1), which has an inhibitory effect on Smoothened (Smo) in the absence of its ligands, the Sonic hedgehog (Shh) proteins. These proteins are fundamental regulators of embryonic development, as illustrated by the dramatic malformations seen in human and mouse embryos with perturbed Hh signal transduction that include polydactyly, craniofacial defects and skeletal malformations. Equally important are the consequences of inappropriate activation of the Hh signaling response in tumor formation. Interestingly, the components of this pathway localize to primary cilia. Moreover, it has been shown that this localization is crucial for Hh signaling. However, in the presence of the ligands, Ptch1 is internalized and destined for degradation or sequestered in a cell compartment where it no longer can play its inhibitory role. ADP-ribosylation factor-like (Arl) 13b, a small GTPase belonging to Arf/Arl family of the Ras superfamily of small GTPases has been implicated in Joubert syndrome, a ciliopathy characterized by congenital cerebellar ataxia, hypotonia, intellectual disability and congenital heart disease. Arl13b-deficient mice, called hennin (hnn) die at embryonic day 13.5 (E13.5) and display morphological abnormalities in primary cilia that lead to the disruption of Hh signaling. Furthermore, Arl13b is directly involved in the regulation of Hh signaling by controlling the localization of several components of this pathway to primary cilia. Here, we show that Arl13b localizes to and regulates the formation of circular dorsal rufles (CDRs), which are actin-basedstructures known to be involved in macropinocytosis and receptor internalization. Additionally, we extended the knowledge of the Hh signaling activation process by showing that CDRs selectively sequester and internalize Ptch1 receptors. CDRs are formed minutes after Hh activation by Shh ligands or the Smo agonist SAG and keep being formed thereafter, suggesting a continuous induction of actin reorganization when the pathway is switched on. Importantly, we observed that disruption of CDRs by silencing WAVE1, a protein required for CDR formation, results in down-regulation of Hh signaling activation. Moreover, the blockade of macropinocytosis, which follows CDR closure, through silencing of a protein necessary for the fission of macropinosomes, namely BARS has a similar effect. These results suggest that CDRs and macropinocytosis are necessary for activation of Hh signaling and indicate that this pathway of internalization controls Hh signal levels. During development, proliferating cells rely on the primary cilium for the transduction of several signaling pathways. Hh induces the differentiation of cardiac muscle. Accordingly, Hh-deficient mice display a variety of laterality defects, including alteration of heart looping, as seen in Arl13b-deficient mice. Therefore, we investigated the role of Arl13b in heart development. We show that Arl13b is highly expressed in the heart of both embryonic and adult mice at mRNA and protein levels. Also, Arl13b localization profile mimics that of primary cilia, which have been shown to be essential to early heart development. E12.5 hnn hearts show an open atrioventricular channel, increased thickening of the ventricular compact layer and increased mitotic index in the left ventricle. Moreover, a delay of 1 to 2 days in development is observed in hnn hearts, when compared to wild-type controls at E13.5. Hence, these results suggest that Arl13b is necessary for embryonic heart development and that cardiac defects might contribute to the embryonic lethality of hnn mice. Altogether, we established a novel mechanism for the regulation of Ptch1 surface levels, involving cytoskeleton remodeling and CDR formation upon Hh signaling activation. This mechanism allows a negative feedback loop that prevents excessive repression of the pathway by removing Ptch1 from the cell surface. Additionally, we determined that the Arl13b loss-offunction mutation causes cardiac defects during development, possibly related to the associated ciliary and Hh signaling defects found in Arl13b-deficient mice. Hh signaling has taken a center stage among the signaling pathways since its regulation is crucial for the appropriate output and function of the cell. Hence, the finding of a novel trafficking mechanism through CDRs and macropinocytosis that controls Hh signaling activation and repression brings new insights to how this pathway can be regulated and can lead to the discovery of novel therapeutic targets and strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch family of evolutionarily conserved proteins regulates a broad spectrum of cell-fate decisions and differentiation processes during fetal and post-natal development. The best characterized role of Notch signaling during mammalian hematopoiesis and lymphopoiesis is the essential function of the Notch1 receptor in T-cell lineage commitment. More recent studies have addressed the roles of other Notch receptors and ligands, as well as their downstream targets, revealing additional novel functions of Notch signaling in intra-thymic T-cell development, B-cell development and peripheral T-cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les interactions épithélio-mésenchymateuses jouent un rôle important dans le contrôle du développement normal de la peau, son homéostasie et sa tumorigenèse. Les fibroblastes dermiques (DFs) représentent la catégorie cellulaire la plus abondante dans le stroma et leur rôle est de plus en plus considéré. En ce qui concerne particulièrement la tumorigenèse, des facteurs diffusibles produits par les fibroblastes entourant les tumeurs épithéliales, appelés 'fibroblastes associés au cancer (CAF)', interagissent au niveau de l'inflammation impliquée directement ou indirectement dans la signalisation paracrine, entre le stroma et les cellules épiéliales cancéreuses. Le risque de cancer de la peau augmente de façon exponentielle avec l'âge. Comme un lien probable entre les deux, la sénescence des fibroblastes résulte de la production du sécrétome favorisant la sénescence (SMS), un groupe de facteurs diffusibles induisant une stimulation paracrine de la croissance, l'inflammation et le remodelage de la matrice. De façon fort intéressante, l'induction de ces gènes est aussi une caractéristique des CAFs. Cependant, le lien entre les deux événements cellulaires sénescence et activation des CAFs reste en grande partie inexploré. L'ATF3 (Activating Transcription Factor 3) est un facteur de transcription induit en réponse au stress, dont les fonctions sont hautement spécifiques du type cellulaire. Bien qu'il ait été découvert dans notre laboratoire en tant que promoteur de tumeurs dans les kératinocytes, ses fonctions biologique et biochimique dans le derme n'ont pas encore été étudiées. Récemment, nous avons constaté que, chez la souris, l'abrogation de la voie de signalisation de Notch/CSL dans les DFs, induisait la formation de tumeurs kératinocytaires multifocales. Ces dernières proviennent de la cancérisation en domaine, un phénomène associé à une atrophie du stroma, des altérations de la matrice et de l'inflammation. D'autres études ont montré que CSL agissait comme un régulateur négatif de gènes impliqués dans sénescence des DFs et dans l'activation des CAFs. Ici, nous montrons que la suppression ou l'atténuation de l'expression de ATF3 dans les DFs induit la sénescence et l'expression des gènes liés aux CAFs, de façon similaire à celle déclenchée par la perte de CSL, tandis que la surexpression de ATF3 supprime ces changements. Nous émettons l'hypothèse que ATF3 joue un rôle suppresseur dans l'activation des CAFs et dans la progression des tumeurs kératinocytaires, en surmontant les conséquences de l'abrogation de la voie de signalisation Notch/CSL. En concordance avec cette hypothèse, nous avons constaté que la perte de ATF3 dans les DFs favorisait la tumorigénicité des kératinocytes via le contrôle négatif de cytokines, des enzymes de la matrice de remodelage et de protéines associées au cancer, peut-être par liaison directe des effecteurs de la voie Notch/CSL : IL6 et les gènes Hes. Enfin, dans les échantillons cliniques humains, le stroma sous-jacent aux lésions précancéreuses de kératoses actiniques montre une diminution significative de l'expression de ATF3 par rapport au stroma jouxtant la peau normale. La restauration de l'expression de ATF3 pourrait être utilisée comme un outil thérapeutique en recherche translationnelle pour prévenir ou réprimer le processus de cancérisation en domaine. - Epithelial-mesenchymal interactions play an important role in control of normal skin development, homeostasis and tumorigenesis. The role of dermal fibroblasts (DFs) as the most abundant cell type in stroma is increasingly appreciated. Especially during tumorigenesis, fibroblasts surrounding epithelial tumors, called Cancer Associated Fibroblasts (CAFs), produce diffusible factors (growth factors, inflammatory cytokines, chemokines and enzymes, and matrix metalloproteinases) that mediate inflammation either directly or indirectly through paracrine signaling between stroma and epithelial cancer cells. The risk of skin cancer increases exponentially with age. As a likely link between the two, senescence of fibroblasts results in production of the senescence-messaging-secretome (SMS), a panel of diffusible factors inducing paracrine growth stimulation, inflammation, and matrix remodeling. Interestingly, induction of these genes is also a characteristic of Cancer Associated Fibroblasts (CAFs). However, the link between the two cellular events, senescence and CAF activation is largely unexplored. ATF3 is a key stress response transcription factor with highly cell type specific functions, which has been discovered as a tumor promoter in keratinocytes in our lab. However, the biological and biochemical function of ATF3 in the dermal compartment of the skin has not been studied yet. Recently, we found that compromised Notch/CSL signaling in dermal fibroblasts (DFs) in mice is a primary cause of multifocal keratinocyte tumors called field cancerization associated with stromal atrophy, matrix alterations and inflammation. Further studies showed that CSL functions as a negative regulator of genes involved in DFs senescence and CAF activation. Here, we show that deletion or silencing of the ATF3 gene in DFs activates senescence and CAF-related gene expression similar to that triggered by loss of CSL, while increased ATF3 suppresses these changes. We hypothesize that ATF3 plays a suppressing role in CAF activation and keratinocyte tumor progression, overcoming the consequences of compromised Notch/CSL signaling. In support of this hypothesis, we found that loss of ATF3 in DFs promotes tumorigenic behavior of keratinocytes via negative control of cytokines, matrix-remodeling enzymes and cancer-associated proteins, possibly through direct binding to Notch/CSL targets, IL6 and Hes genes. On the other hand, in human clinical samples, stromal fields underlying premalignant actinic keratosis lesions showed significantly decreased ATF3 expression relative to stroma of flanking normal skin. Restoration of ATF3, which is lost in cancer development, may be used as a therapeutic tool for translational research to prevent or suppress the field cancerization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.