907 resultados para Injection marinade


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.