911 resultados para Information treatment
Resumo:
The concept of sustainable urban development has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of modern urban lifestyles. Today, sustainable development has become a very prominent element in the day-to-day debate on urban policy and the expression of that policy in urban planning and development decisions. As a result of this, during the last few years, sustainable development automation applications such as sustainable urban development decision support systems have become popular tools as they offer new opportunities for local governments to realise their sustainable development agendas. This chapter explores a range of issues associated with the application of information and communication technologies and decision support systems in the process of underpinning sustainable urban development. The chapter considers how information and communication technologies can be applied to enhance urban planning, raise environmental awareness, share decisions and improve public participation. It introduces and explores three web-based geographical information systems projects as best practice. These systems are developed as support tools to include public opinion in the urban planning and development processes, and to provide planners with comprehensive tools for the analysis of sustainable urban development variants in order to prepare the best plans for constructing sustainable urban communities and futures.
Resumo:
Most information retrieval (IR) models treat the presence of a term within a document as an indication that the document is somehow "about" that term, they do not take into account when a term might be explicitly negated. Medical data, by its nature, contains a high frequency of negated terms - e.g. "review of systems showed no chest pain or shortness of breath". This papers presents a study of the effects of negation on information retrieval. We present a number of experiments to determine whether negation has a significant negative affect on IR performance and whether language models that take negation into account might improve performance. We use a collection of real medical records as our test corpus. Our findings are that negation has some affect on system performance, but this will likely be confined to domains such as medical data where negation is prevalent.
Resumo:
The development of locally-based healthcare initiatives, such as community health coalitions that focus on capacity building programs and multi-faceted responses to long-term health problems, have become an increasingly important part of the public health landscape. As a result of their complexity and the level of investment, it has become necessary to develop innovative ways to help manage these new healthcare approaches. Geographical Information Systems (GIS) have been suggested as one of the innovative approaches that will allow community health coalitions to better manage and plan their activities. The focus of this paper is to provide a commentary on the use of GIS as a tool for community coalitions and discuss some of the potential benefits and issues surrounding the development of these tools.
Informed learning: a pedagogical construct attending simultaneously to information use and learning.
Resumo:
The idea of informed learning, applicable in academic, workplace and community settings, has been derived largely from a program of phenomenographic research in the field of information literacy, which has illuminated the experience of using information to learn. Informed learning is about simultaneous attention to information use and learning, where both information and learning are considered to be relational; and is built upon a series of key concepts such as second–order perspective, simultaneity, awareness, and relationality. Informed learning also relies heavily on reflection as a strategy for bringing about learning. As a pedagogical construct, informed learning supports inclusive curriculum design and implementation. This paper reports aspects of the informed learning research agenda which are currently being pursued at the Queensland University of Technology (QUT). The first part elaborates the idea of informed learning, examines the key concepts underpinning this pedagogical construct, and explains its emergence from the research base of the QUT Information Studies research team. The second presents a case, which demonstrates the ongoing development of informed learning theory and practice, through the development of inclusive informed learning for a culturally diverse higher education context.
Resumo:
This article explores the quality of accounting information in listed family firms. The authors exploit the features of the Italian equitymarket characterizd by high ownership concentration across all tpes of firms to disentangle the effects of family ownership from other major block holders on the quality of accounting information. The findings document that family firms convey financial information of higher quality compared to the nonfamily peers. Furthermore the authors provide evidence that the determinants of accounting quality differ across family and nonfamily firms.
Resumo:
Pediatric oncology has emerged as one of the great medical success stories of the last 4 decades. The cure rate of childhood cancer has increased from approximately 25% in the 1960’s to more than 75% in more recent years. However, very little is known about how children actually experience the diagnosis and treatment of their illness. A total of 9 families in which a child was diagnosed with cancer were interviewed twice over a 12-month period. Using the qualitative methodology of interpretative phenomenological analysis (IPA), children’s experiences of being patients with a diagnosis of cancer were explicated. The results revealed 5 significant themes: the experience of illness, the upside of being sick, refocusing on what is important, acquiring a new perspective, and the experience of returning to wellbeing. Changes over time were noted because children’s experiences’ were often pertinent to the stage of treatment the child had reached. These results revealed rich and intimate information about a sensitive issue with implications for understanding child development and medical and psychosocial treatment.
Resumo:
Background: Despite declining rates of cardiovascular disease (CVD) mortality in developed countries, lower socioeconomic groups continue to experience a greater burden of the disease. There are now many evidence-based treatments and prevention strategies for the management of CVD and it is essential that their impact on the more disadvantaged group is understood if socioeconomic inequalities in CVD are to be reduced. Aims: To determine whether key interventions for CVD prevention and treatment are effective among lower socioeconomic groups, to describe barriers to their effectiveness and the potential or actual impact of these interventions on the socioeconomic gradient in CVD. Methods: Interventions were selected from four stages of the CVD continuum. These included smoking reduction strategies, absolute risk assessment, cardiac rehabilitation, secondary prevention medications, and heart failure self-management programmes. Electronic searches were conducted using terms for each intervention combined with terms for socioeconomic status (SES). Results: Only limited evidence was found for the effectiveness of the selected interventions among lower SES groups and there was little exploration of socioeconomic-related barriers to their uptake. Some broad themes and key messages were identified. In the majority of findings examined, it was clear that the underlying material, social and environmental factors associated with disadvantage are a significant barrier to the effectiveness of interventions. Conclusion: Opportunities to reduce socioeconomic inequalities occur at all stages of the CVD continuum. Despite this, current treatment and prevention strategies may be contributing to the widening socioeconomic-CVD gradient. Further research into the impact of best-practice interventions for CVD upon lower SES groups is required.
Resumo:
Background: This study provides the latest available relative survival data for Australian childhood cancer patients. Methods: Data from the population-based Australian Paediatric Cancer Registry were used to describe relative survival outcomes using the period method for 11 903 children diagnosed with cancer between 1983 and 2006 and prevalent at any time between 1997 and 2006. Results: The overall relative survival was 90.4% after 1 year, 79.5% after 5 years and 74.7% after 20 years. Where information onstage at diagnosis was available (lymphomas, neuroblastoma, renal tumours and rhabdomyosarcomas), survival was significantly poorer for more-advanced stage. Survival was lower among infants compared with other children for those diagnosed with leukaemia, tumours of the central nervous system and renal tumours but higher for neuroblastoma. Recent improvements in overall childhood cancer survival over time are mainly because of improvements among leukaemia patients. Conclusion: The high and improving survival prognosis for children diagnosed with cancer in Australia is consistent with various international estimates. However, a 5-year survival estimate of 79% still means that many children who are diagnosed with cancer will die within 5 years, whereas others have long-term health morbidities and complications associated with their treatments. It is hoped that continued developments in treatment protocols will result in further improvements in survival.
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
Aim. This paper is a report of a review conducted to identify (a) best practice in information transfer from the emergency department for multi-trauma patients; (b) conduits and barriers to information transfer in trauma care and related settings; and (c) interventions that have an impact on information communication at handover and beyond. Background. Information transfer is integral to effective trauma care, and communication breakdown results in important challenges to this. However, evidence of adequacy of structures and processes to ensure transfer of patient information through the acute phase of trauma care is limited. Data sources. Papers were sourced from a search of 12 online databases and scanning references from relevant papers for 1990–2009. Review methods. The review was conducted according to the University of York’s Centre for Reviews and Dissemination guidelines. Studies were included if they concerned issues that influenced information transfer for patients in healthcare settings. Results. Forty-five research papers, four literature reviews and one policy statement were found to be relevant to parts of the topic, but not all of it. The main issues emerging concerned the impact of communication breakdown in some form, and included communication issues within trauma team processes, lack of structure and clarity during handovers including missing, irrelevant and inaccurate information, distractions and poorly documented care. Conclusion. Many factors influence information transfer but are poorly identified in relation to trauma care. The measurement of information transfer, which is integral to patient handover, has not been the focus of research to date. Nonetheless, documented patient information is considered evidence of care and a resource that affects continuing care.
Resumo:
Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.
Resumo:
Information Overload and Mismatch are two fundamental problems affecting the effectiveness of information filtering systems. Even though both term-based and patternbased approaches have been proposed to address the problems of overload and mismatch, neither of these approaches alone can provide a satisfactory solution to address these problems. This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern-based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experimental results based on the RCV1 corpus show that the proposed twostage filtering model significantly outperforms the both termbased and pattern-based information filtering models.
Resumo:
BACKGROUND: Indigenous patients with acute coronary syndromes represent a high-risk group. There are however few contemporary datasets addressing differences in the presentation and management of Indigenous and non-Indigenous patients with chest pain. METHODS: The Heart Protection Project, is a multicentre retrospective audit of consecutive medical records from patients presenting with chest pain. Patients were identified as Indigenous or non-Indigenous, and time to presentation and cardiac investigations as well as rates of cardiac investigations and procedures were compared between the two groups. RESULTS: Of the 2380 patients included, 199 (8.4%) identified as Indigenous, and 2174 (91.6%) as non-Indigenous. Indigenous patients were younger, had higher rates hyperlipidaemia, diabetes, smoking, known coronary artery disease and a lower rate of prior PCI; and were significantly less likely to have private health insurance, be admitted to an interventional facility or to have a cardiologist as primary physician. Following adjustment for difference in baseline characteristics, Indigenous patients had comparable rates of cardiac investigations and delay times to presentation and investigations. CONCLUSIONS: Although the Indigenous population was identified as a high-risk group, in this analysis of selected Australian hospitals there were no significant differences in treatment or management of Indigenous patients in comparison to non-Indigenous.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. This article will discuss a research project that fills this gap. Funded by the Australian Learning and Teaching Council, the project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. This article will provide a detailed discussion on each of these themes. The study’s findings also suggest that “librarian 2.0” is a state of mind, and that the Australian LIS profession is undergoing a significant shift in “attitude.”