947 resultados para Inductive Inference
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
There is little consensus regarding how verticality (social power, dominance, and status) is related to accurate interpersonal perception. The relation could be either positive or negative, and there could be many causal processes at play. The present article discusses the theoretical possibilities and presents a meta-analysis of this question. In studies using a standard test of interpersonal accuracy, higher socioeconomic status (SES) predicted higher accuracy defined as accurate inference about the meanings of cues; also, higher experimentally manipulated vertical position predicted higher accuracy defined as accurate recall of others' words. In addition, although personality dominance did not predict accurate inference overall, the type of personality dominance did, such that empathic/responsible dominance had a positive relation and egoistic/aggressive dominance had a negative relation to accuracy. In studies involving live interaction, higher experimentally manipulated vertical position produced lower accuracy defined as accurate inference about cues; however, methodological problems place this result in doubt.
Resumo:
Seloste artikkelista: Koskela, L., Sinha, B. K. & Nummi, T. 2007. Some aspects of the sampling distribution of the apportionment index and related inference. Silva Fennica 41 (4) : 699-715
Resumo:
Introduction. If we are to promote more patient-centred approaches in care delivery, we have to better characterize the situations in which being patient-centred is difficult to achieve. Data from professionals in health and social care are important because they are the people charged with operationalizing patient-centred care (PCC) in their daily practice. However, empirical accounts from frontline care providers are still lacking, and it is important to gather experiences not only from doctors but also from the other care providers. Indeed, experiences from different professions can help inform our understanding of patient care, which is expected to be both patient-centred and collaborative. Methods. This study was based on the following research question: What factors make the provision of PCC difficult to achieve? Sample and setting. A purposeful sampling technique was used, allowing for a series of choices about the participants and their professional affiliation. Because patient-centredness is the focus, 3 professions appeared to be of special interest: general internists, nurses and social workers. The study was undertaken in the General Internal Medicine Division of a teaching hospital located in a North American context. Data Collection. To answer the research question, a methodological approach based on a theory called phenomenology was chosen. Accordingly, semi-structured interviews were used since they generate understanding of the meanings different individuals have of their lived world. Interviews with 8 physicians, 10 nurses and 10 social workers were eventually conducted. Data analysis. An inductive thematic analysis was employed to make sense of the interview data. Results. The thematic analysis allowed identifying various types of challenges to PCC. Although most of the challenges were perceived by all three groups of professionals, they were perceived to a different degree across the professions, which likely reflected the scope of practice of each profession. The challenges and their distribution across the professions are illustrated in Table 1. Examples of challenges are provided in Table 2. Discussion. There is a tension between what is supposed to be done - what stands in the philosophy of patient -centredness - and what is currently done - the real life with all the challenges to PCC. According to some participants' accounts, PCC clearly risks becoming a mere illusion for health care professionals on which too great pressures are imposed.
Resumo:
The visual angle that is projected by an object (e.g. a ball) on the retina depends on the object's size and distance. Without further information, however, the visual angle is ambiguous with respect to size and distance, because equal visual angles can be obtained from a big ball at a longer distance and a smaller one at a correspondingly shorter distance. Failure to recover the true 3D structure of the object (e.g. a ball's physical size) causing the ambiguous retinal image can lead to a timing error when catching the ball. Two opposing views are currently prevailing on how people resolve this ambiguity when estimating time to contact. One explanation challenges any inference about what causes the retinal image (i.e. the necessity to recover this 3D structure), and instead favors a direct analysis of optic flow. In contrast, the second view suggests that action timing could be rather based on obtaining an estimate of the 3D structure of the scene. With the latter, systematic errors will be predicted if our inference of the 3D structure fails to reveal the underlying cause of the retinal image. Here we show that hand closure in catching virtual balls is triggered by visual angle, using an assumption of a constant ball size. As a consequence of this assumption, hand closure starts when the ball is at similar distance across trials. From that distance on, the remaining arrival time, therefore, depends on ball's speed. In order to time the catch successfully, closing time was coupled with ball's speed during the motor phase. This strategy led to an increased precision in catching but at the cost of committing systematic errors.
Resumo:
Wastewater-based epidemiology consists in acquiring relevant information about the lifestyle and health status of the population through the analysis of wastewater samples collected at the influent of a wastewater treatment plant. Whilst being a very young discipline, it has experienced an astonishing development since its firs application in 2005. The possibility to gather community-wide information about drug use has been among the major field of application. The wide resonance of the first results sparked the interest of scientists from various disciplines. Since then, research has broadened in innumerable directions. Although being praised as a revolutionary approach, there was a need to critically assess its added value, with regard to the existing indicators used to monitor illicit drug use. The main, and explicit, objective of this research was to evaluate the added value of wastewater-based epidemiology with regards to two particular, although interconnected, dimensions of illicit drug use. The first is related to trying to understand the added value of the discipline from an epidemiological, or societal, perspective. In other terms, to evaluate if and how it completes our current vision about the extent of illicit drug use at the population level, and if it can guide the planning of future prevention measures and drug policies. The second dimension is the criminal one, with a particular focus on the networks which develop around the large demand in illicit drugs. The goal here was to assess if wastewater-based epidemiology, combined to indicators stemming from the epidemiological dimension, could provide additional clues about the structure of drug distribution networks and the size of their market. This research had also an implicit objective, which focused on initiating the path of wastewater- based epidemiology at the Ecole des Sciences Criminelles of the University of Lausanne. This consisted in gathering the necessary knowledge about the collection, preparation, and analysis of wastewater samples and, most importantly, to understand how to interpret the acquired data and produce useful information. In the first phase of this research, it was possible to determine that ammonium loads, measured directly in the wastewater stream, could be used to monitor the dynamics of the population served by the wastewater treatment plant. Furthermore, it was shown that on the long term, the population did not have a substantial impact on consumption patterns measured through wastewater analysis. Focussing on methadone, for which precise prescription data was available, it was possible to show that reliable consumption estimates could be obtained via wastewater analysis. This allowed to validate the selected sampling strategy, which was then used to monitor the consumption of heroin, through the measurement of morphine. The latter, in combination to prescription and sales data, provided estimates of heroin consumption in line with other indicators. These results, combined to epidemiological data, highlighted the good correspondence between measurements and expectations and, furthermore, suggested that the dark figure of heroin users evading harm-reduction programs, which would thus not be measured by conventional indicators, is likely limited. In the third part, which consisted in a collaborative study aiming at extensively investigating geographical differences in drug use, wastewater analysis was shown to be a useful complement to existing indicators. In particular for stigmatised drugs, such as cocaine and heroin, it allowed to decipher the complex picture derived from surveys and crime statistics. Globally, it provided relevant information to better understand the drug market, both from an epidemiological and repressive perspective. The fourth part focused on cannabis and on the potential of combining wastewater and survey data to overcome some of their respective limitations. Using a hierarchical inference model, it was possible to refine current estimates of cannabis prevalence in the metropolitan area of Lausanne. Wastewater results suggested that the actual prevalence is substantially higher compared to existing figures, thus supporting the common belief that surveys tend to underestimate cannabis use. Whilst being affected by several biases, the information collected through surveys allowed to overcome some of the limitations linked to the analysis of cannabis markers in wastewater (i.e., stability and limited excretion data). These findings highlighted the importance and utility of combining wastewater-based epidemiology to existing indicators about drug use. Similarly, the fifth part of the research was centred on assessing the potential uses of wastewater-based epidemiology from a law enforcement perspective. Through three concrete examples, it was shown that results from wastewater analysis can be used to produce highly relevant intelligence, allowing drug enforcement to assess the structure and operations of drug distribution networks and, ultimately, guide their decisions at the tactical and/or operational level. Finally, the potential to implement wastewater-based epidemiology to monitor the use of harmful, prohibited and counterfeit pharmaceuticals was illustrated through the analysis of sibutramine, and its urinary metabolite, in wastewater samples. The results of this research have highlighted that wastewater-based epidemiology is a useful and powerful approach with numerous scopes. Faced with the complexity of measuring a hidden phenomenon like illicit drug use, it is a major addition to the panoply of existing indicators. -- L'épidémiologie basée sur l'analyse des eaux usées (ou, selon sa définition anglaise, « wastewater-based epidemiology ») consiste en l'acquisition d'informations portant sur le mode de vie et l'état de santé d'une population via l'analyse d'échantillons d'eaux usées récoltés à l'entrée des stations d'épuration. Bien qu'il s'agisse d'une discipline récente, elle a vécu des développements importants depuis sa première mise en oeuvre en 2005, notamment dans le domaine de l'analyse des résidus de stupéfiants. Suite aux retombées médiatiques des premiers résultats de ces analyses de métabolites dans les eaux usées, de nombreux scientifiques provenant de différentes disciplines ont rejoint les rangs de cette nouvelle discipline en développant plusieurs axes de recherche distincts. Bien que reconnu pour son coté objectif et révolutionnaire, il était nécessaire d'évaluer sa valeur ajoutée en regard des indicateurs couramment utilisés pour mesurer la consommation de stupéfiants. En se focalisant sur deux dimensions spécifiques de la consommation de stupéfiants, l'objectif principal de cette recherche était focalisé sur l'évaluation de la valeur ajoutée de l'épidémiologie basée sur l'analyse des eaux usées. La première dimension abordée était celle épidémiologique ou sociétale. En d'autres termes, il s'agissait de comprendre si et comment l'analyse des eaux usées permettait de compléter la vision actuelle sur la problématique, ainsi que déterminer son utilité dans la planification des mesures préventives et des politiques en matière de stupéfiants actuelles et futures. La seconde dimension abordée était celle criminelle, en particulier, l'étude des réseaux qui se développent autour du trafic de produits stupéfiants. L'objectif était de déterminer si cette nouvelle approche combinée aux indicateurs conventionnels, fournissait de nouveaux indices quant à la structure et l'organisation des réseaux de distribution ainsi que sur les dimensions du marché. Cette recherche avait aussi un objectif implicite, développer et d'évaluer la mise en place de l'épidémiologie basée sur l'analyse des eaux usées. En particulier, il s'agissait d'acquérir les connaissances nécessaires quant à la manière de collecter, traiter et analyser des échantillons d'eaux usées, mais surtout, de comprendre comment interpréter les données afin d'en extraire les informations les plus pertinentes. Dans la première phase de cette recherche, il y pu être mis en évidence que les charges en ammonium, mesurées directement dans les eaux usées permettait de suivre la dynamique des mouvements de la population contributrice aux eaux usées de la station d'épuration de la zone étudiée. De plus, il a pu être démontré que, sur le long terme, les mouvements de la population n'avaient pas d'influence substantielle sur le pattern de consommation mesuré dans les eaux usées. En se focalisant sur la méthadone, une substance pour laquelle des données précises sur le nombre de prescriptions étaient disponibles, il a pu être démontré que des estimations exactes sur la consommation pouvaient être tirées de l'analyse des eaux usées. Ceci a permis de valider la stratégie d'échantillonnage adoptée, qui, par le bais de la morphine, a ensuite été utilisée pour suivre la consommation d'héroïne. Combinée aux données de vente et de prescription, l'analyse de la morphine a permis d'obtenir des estimations sur la consommation d'héroïne en accord avec des indicateurs conventionnels. Ces résultats, combinés aux données épidémiologiques ont permis de montrer une bonne adéquation entre les projections des deux approches et ainsi démontrer que le chiffre noir des consommateurs qui échappent aux mesures de réduction de risque, et qui ne seraient donc pas mesurés par ces indicateurs, est vraisemblablement limité. La troisième partie du travail a été réalisée dans le cadre d'une étude collaborative qui avait pour but d'investiguer la valeur ajoutée de l'analyse des eaux usées à mettre en évidence des différences géographiques dans la consommation de stupéfiants. En particulier pour des substances stigmatisées, telles la cocaïne et l'héroïne, l'approche a permis d'objectiver et de préciser la vision obtenue avec les indicateurs traditionnels du type sondages ou les statistiques policières. Globalement, l'analyse des eaux usées s'est montrée être un outil très utile pour mieux comprendre le marché des stupéfiants, à la fois sous l'angle épidémiologique et répressif. La quatrième partie du travail était focalisée sur la problématique du cannabis ainsi que sur le potentiel de combiner l'analyse des eaux usées aux données de sondage afin de surmonter, en partie, leurs limitations. En utilisant un modèle d'inférence hiérarchique, il a été possible d'affiner les actuelles estimations sur la prévalence de l'utilisation de cannabis dans la zone métropolitaine de la ville de Lausanne. Les résultats ont démontré que celle-ci est plus haute que ce que l'on s'attendait, confirmant ainsi l'hypothèse que les sondages ont tendance à sous-estimer la consommation de cannabis. Bien que biaisés, les données récoltées par les sondages ont permis de surmonter certaines des limitations liées à l'analyse des marqueurs du cannabis dans les eaux usées (i.e., stabilité et manque de données sur l'excrétion). Ces résultats mettent en évidence l'importance et l'utilité de combiner les résultats de l'analyse des eaux usées aux indicateurs existants. De la même façon, la cinquième partie du travail était centrée sur l'apport de l'analyse des eaux usées du point de vue de la police. Au travers de trois exemples, l'utilisation de l'indicateur pour produire du renseignement concernant la structure et les activités des réseaux de distribution de stupéfiants, ainsi que pour guider les choix stratégiques et opérationnels de la police, a été mise en évidence. Dans la dernière partie, la possibilité d'utiliser cette approche pour suivre la consommation de produits pharmaceutiques dangereux, interdits ou contrefaits, a été démontrée par l'analyse dans les eaux usées de la sibutramine et ses métabolites. Les résultats de cette recherche ont mis en évidence que l'épidémiologie par l'analyse des eaux usées est une approche pertinente et puissante, ayant de nombreux domaines d'application. Face à la complexité de mesurer un phénomène caché comme la consommation de stupéfiants, la valeur ajoutée de cette approche a ainsi pu être démontrée.
Resumo:
International sport governing bodies (ISGBs) are built on the foundations of freedom of association and traditionally enjoy a large degree of autonomy in their decision-making. Their autonomy is increasingly confined, however, and their hierarchical self-governance is giving way to a more networked governance, in which different stakeholders exert power in different ways and in different contexts in a complex web of interrelationships. Taking a rationalist perspective on the autonomy of ISGBs, this article demonstrates that ISGBs are deploying strategies to safeguard their waning governing monopoly over international sport. Opting for an inductive approach, the authors present four possible conceptualizations of autonomy as applied to ISGBs, namely political autonomy, legal autonomy, financial autonomy and pyramidal autonomy. For each dimension, they describe the different strategies ISGBs wield in order to safeguard different dimensions of their autonomy. This article uses governance theories to hypothesize that the autonomy of ISGBs can be understood as 'pragmatic autonomy' since ISGBs only cede certain aspects of their autonomy under particular circumstances and when being subject to specific threats. Acting in a rationalist manner, they are able to keep control over governance developments in sport by using indirect and more subtle forms of governance.
Resumo:
Lorsque de l'essence est employée pour allumer et/ou propager un incendie, l'inférence de la source de l'essence peut permettre d'établir un lien entre le sinistre et une source potentielle. Cette inférence de la source constitue une alternative intéressante pour fournir des éléments de preuve dans ce type d'événements où les preuves matérielles laissées par l'auteur sont rares. Le but principal de cette recherche était le développement d'une méthode d'analyse de spécimens d'essence par GC-IRMS, méthode pas routinière et peu étudiée en science forensique, puis l'évaluation de son potentiel à inférer la source de traces d'essence en comparaison aux performances de la GC-MS. Un appareillage permettant d'analyser simultanément les échantillons par MS et par IRMS a été utilisé dans cette recherche. Une méthode d'analyse a été développée, optimisée et validée pour cet appareillage. Par la suite, des prélèvements d'essence provenant d'un échantillonnage conséquent et représentatif du marché de la région lausannoise ont été analysés. Finalement, les données obtenues ont été traitées et interprétées à l'aide de méthodes chimiométriques. Les analyses effectuées ont permis de montrer que la méthodologie mise en place, aussi bien pour la composante MS que pour l'IRMS, permet de différencier des échantillons d'essence non altérée provenant de différentes stations-service. Il a également pu être démontré qu'à chaque nouveau remplissage des cuves d'une station-service, la composition de l'essence distribuée par cette station est quasi unique. La GC-MS permet une meilleure différenciation d'échantillons prélevés dans différentes stations, alors que la GC-IRMS est plus performante lorsqu'il s'agit de comparer des échantillons collectés après chacun des remplissages d'une cuve. Ainsi, ces résultats indiquent que les deux composantes de la méthode peuvent être complémentaires pour l'analyse d'échantillons d'essence non altérée. Les résultats obtenus ont également permis de montrer que l'évaporation des échantillons d'essence ne compromet pas la possibilité de grouper des échantillons de même source par GC-MS. Il est toutefois nécessaire d'effectuer une sélection des variables afin d'éliminer celles qui sont influencées par le phénomène d'évaporation. Par contre, les analyses effectuées ont montré que l'évaporation des échantillons d'essence a une forte influence sur la composition isotopique des échantillons. Cette influence est telle qu'il n'est pas possible, même en effectuant une sélection des variables, de grouper correctement des échantillons évaporés par GC-IRMS. Par conséquent, seule la composante MS de la méthodologie mise en place permet d'inférer la source d'échantillons d'essence évaporée. _________________________________________________________________________________________________ When gasoline is used to start and / or propagate an arson, source inference of gasoline can allow to establish a link between the fire and a potential source. This source inference is an interesting alternative to provide evidence in this type of events where physical evidence left by the author are rare. The main purpose of this research was to develop a GC-IRMS method for the analysis of gasoline samples, a non-routine method and little investigated in forensic science, and to evaluate its potential to infer the source of gasoline traces compared to the GC-MS performances. An instrument allowing to analyze simultaneously samples by MS and IRMS was used in this research. An analytical method was developed, optimized and validated for this instrument. Thereafter, gasoline samples from a large sampling and representative of the Lausanne area market were analyzed. Finally, the obtained data were processed and interpreted using chemometric methods. The analyses have shown that the methodology, both for MS and for IRMS, allow to differentiate unweathered gasoline samples from different service stations. It has also been demonstrated that each new filling of the tanks of a station generates an almost unique composition of gasoline. GC-MS achieves a better differentiation of samples coming from different stations, while GC-IRMS is more efficient to distinguish samples collected after each filling of a tank. Thus, these results indicate that the two components of the method can be complementary to the analysis of unweathered gasoline samples. The results have also shown that the evaporation of gasoline samples does not compromise the possibility to group samples coming from the same source by GC-MS. It is however necessary to make a selection of variables in order to eliminate those which are influenced by the evaporation. On the other hand, the carried out analyses have shown that the evaporation of gasoline samples has such a strong influence on the isotopic composition of the samples that it is not possible, even by performing a selection of variables, to properly group evaporated samples by GC-IRMS. Therefore, only the MS allows to infer the source of evaporated gasoline samples.
Resumo:
The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.
Resumo:
Este trabajo pretende estudiar el uso que se hace de la iluminación para la puesta en valor del patrimonio. Aquí veremos las medidas, normativas, y usos que emplea la ciudad en el espacio nocturno y la relación que tiene con el turismo. Ver si se transmite a través de la imagen inducida nocturna de la ciudad. En un segundo tiempo, miraremos si esas medidas influyen en la imagen del destino. Es decir, si las intenciones de los agentes inductivos, con las medidas, proyectos y normativas se ven reflejados y presentes en las imágenes inducidas del destino
Resumo:
Summary: Determining the function of the Finnish adessive case through inference in a local context
Resumo:
Tässä työssä kuvataan menetelmä, jonka avulla on mahdollista sorvausprosessista mitattujen signaalien perusteella muokata lastuamisprosessin parametreja siten, että prosessissa mahdollisesti esiintyvät ongelmatilanteet korjataan. Työ on tehty osana Feedchip-tutkimushanketta ja tukeutuu tutkimushankkeessa aiemmin tehtyyn työhön vaadittavien korjaustoimenpiteiden, signaaleja mittaavien antureiden instrumentoinnin sekä alustavan ongelmatilanteiden ominaispiirteiden signaaleista tunnistuksen osalta. Tämä työ keskittyy esittelemään toiminnot, joiden avulla aiemmat tulokset voidaan koota yhteen kokonaisuuteen. Järjestelmän toiminta edellyttää sen osien toiminnan korkean tason koordinointia. Lisäksi määritellään päättelyjärjestelmä, joka kykenee mitatuista arvoista tunnistettujen ongelmatilanteiden esiintymisasteiden perusteella määrittämään tarvittavat toimenpiteet ongelmatilanteiden poistamiseksi. Kandidaatintyön rinnalla toteutetaan ohjelmisto Lappeenrannan teknillisen yliopiston konepajatekniikan laboratorion sorvausjärjestelmän yhteyteen rakennetun prototyyppilaitteiston ohjaamiseksi.
Resumo:
A sodium mordenite zeolite (Na-MOR) was synthesized and modified by dealumination with chloridric acid solution (H-MOR). X-Ray Diffraction (XRD), Inductive Coupled Plasm (ICP) and Scanning Electron Micrograph (SEM) techniques were used for sample characterization. The zeolite catalytic behavior was evaluated through toluene disproportionation at 435°C. It was verified that mordenites were very selective for the disproportionation reaction and the samples with higher aluminum content showed larger initial activity, however, these samples showed too a higher deactivation velocity due to a blockage of the unidimensional porous system of the zeolite by coke deposits. The selectivity to xylene isomers was practically not influenced by the Si/Al ratio and changed with the time on stream, due to coke formation. Transition state shape selectivity inside the mordenite pores is also discussed.
Resumo:
This thesis was focussed on statistical analysis methods and proposes the use of Bayesian inference to extract information contained in experimental data by estimating Ebola model parameters. The model is a system of differential equations expressing the behavior and dynamics of Ebola. Two sets of data (onset and death data) were both used to estimate parameters, which has not been done by previous researchers in (Chowell, 2004). To be able to use both data, a new version of the model has been built. Model parameters have been estimated and then used to calculate the basic reproduction number and to study the disease-free equilibrium. Estimates of the parameters were useful to determine how well the model fits the data and how good estimates were, in terms of the information they provided about the possible relationship between variables. The solution showed that Ebola model fits the observed onset data at 98.95% and the observed death data at 93.6%. Since Bayesian inference can not be performed analytically, the Markov chain Monte Carlo approach has been used to generate samples from the posterior distribution over parameters. Samples have been used to check the accuracy of the model and other characteristics of the target posteriors.