887 resultados para Immunoglobulin E


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the evolution of eukaryotic genes, introns are believed to have played a major role in increasing the probability of favorable duplication events, chance recombinations, and exon shuffling resulting in functional hybrid proteins. As a rule, prokaryotic genes lack introns, and the examples of prokaryotic introns described do not seem to have contributed to gene evolution by exon shuffling. Still, certain protein families in modern bacteria evolve rapidly by recombination of genes, duplication of functional domains, and as shown for protein PAB of the anaerobic bacterial species Peptostreptococcus magnus, by the shuffling of an albumin-binding protein module from group C and G streptococci. Characterization of a protein PAB-related gene in a P. magnus strain with less albumin-binding activity revealed that the shuffled module was missing. Based on this fact and observations made when comparing gene sequences of this family of bacterial surface proteins interacting with albumin and/or immunoglobulin, a model is presented that can explain how this rapid intronless evolution takes place. A new kind of genetic element is introduced: the recer sequence promoting interdomain, in frame recombination and acting as a structure-less flexibility-promoting spacer in the corresponding protein. The data presented also suggest that antibiotics could represent the selective pressure behind the shuffling of protein modules in P. magnus, a member of the indigenous bacterial flora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel approach to the generation of monoclonal antibodies based on the molecular cloning and expression of immunoglobulin variable region cDNAs generated from single rabbit or murine lymphocytes that were selected for the production of specific antibodies. Single cells secreting antibodies for a specific peptide either from gp116 of the human cytomegalovirus or from gp120 of HIV-1 or for sheep red blood cells were selected using antigen-specific hemolytic plaque assays. Sheep red blood cells were coated with specific peptides in a procedure applicable to any antigen that can be biotinylated. Heavy- and light-chain variable region cDNAs were rescued from single cells by reverse transcription-PCR and expressed in the context of human immunoglobulin constant regions. These chimeric murine and rabbit monoclonal antibodies replicated the target specificities of the original antibody-forming cells. The selected lymphocyte antibody method exploits the in vivo mechanisms that generate high-affinity antibodies. This method can use lymphocytes from peripheral blood, can exploit a variety of procedures that identify individual lymphocytes producing a particular antibody, and is applicable to the generation of monoclonal antibodies from many species, including humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer, which functions as signaling subunit of the receptor. Stimulation of the BCR activates protein tyrosine kinases (PTKs) that phosphorylate a number of substrate proteins, including the Ig-alpha/Ig-beta heterodimer of the BCR itself. How the PTKs become activated after BCR engagement is not known at present. Here, we show that BCR-negative J558L cells treated with the protein tyrosine phosphatase inhibitor pervanadate/H2O2 display only a weak substrate phosphorylation. However, in BCR-positive transfectants of J558L, treatment with pervanadate/H2O2 induces a strong phosphorylation of several substrate proteins. Treatment with pervanadate/H2O2 does not result in receptor crosslinking, yet the pattern of protein phosphorylation is similar to that observed after BCR stimulation by antigen. The response requires cellular integrity because tyrosine phosphorylation of most substrates is not visible in cell lysates. Cells that express a BCR containing an Ig-alpha subunit with a mutated immunoreceptor tyrosine-based activation motif display a delayed response. The data suggest that, once expressed on the surface, the BCR organizes protein tyrosine phosphatases, PTKs, and their substrates into a transducer complex that can be activated by pervanadate/H202 in the absence of BCR crosslinking. Assembly of this preformed complex seems to be a prerequisite for BCR-mediated signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the role of transcriptional enhancers in regulating accessibility of the T-cell receptor beta-chain (TCRbeta) locus, we generated embryonic stem cell lines in which a single allelic copy of the endogenous TCRbeta enhancer (Ebeta) was either deleted or replaced with the immunoglobulin heavy-chain intronic enhancer. We assayed the effects of these mutations on activation of the TCRbeta locus in normal T- and B-lineage cells by RAG-2 (recombination-activating gene 2)-deficient blastocyst complementation. We found that Ebeta is required for rearrangement and germ-line transcription of the TCRbeta locus in T-lineage cells. In the absence of Ebeta, the heavy-chain intronic enhancer partially supported joining region beta-chain rearrangement in T- but not in B-lineage cells. However, ability of the heavy-chain intronic enhancer to induce rearrangements was blocked by linkage to an expressed neomycin-resistance gene (neo(r)). These results demonstrate a critical role for Ebeta in promoting accessibility of the TCRbeta locus and suggest that additional negative elements may cooperate to further modulate this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of a multisubunit protein (immunoglobulin light chain) was solved in three crystal forms, differing only in the solvent of crystallization. The three structures were obtained at high ionic strength and low pH, high ionic strength and high pH, and low ionic strength and neutral pH. The three resulting "snapshots" of possible structures show that their variable-domain interactions differ, reflecting their stabilities under specific solvent conditions. In the three crystal forms, the variable domains had different rotational and translational relationships, whereas no alteration of the constant domains was found. The critical residues involved in the observed effect of the solvent are tryptophans and histidines located between the two variable domains in the dimeric structure. Tryptophan residues are commonly found in interfaces between proteins and their subunits, and histidines have been implicated in pH-dependent conformation changes. The quaternary structure observed for a multisubunit protein or protein complex in a crystal may be influenced by the interactions of the constituents within the molecule or complex and/or by crystal packing interactions. The comparison of buried surface areas and hydrogen bonds between the domains forming the molecule and between the molecules forming the crystals suggest that, for this system, the interactions within the molecule are most likely the determining factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neural cell adhesion molecule (NCAM) is a membrane-associated member of the immunoglobulin superfamily capable of both homophilic and heterophilic binding. To investigate the significance of this binding, a gene targeting strategy in embryonic stem (ES) cells was used to replace the membrane-associated forms of NCAM with a soluble, secreted form of its extracellular domain. Although the heterozygous mutant ES cells were able to generate low coat color chimeric mice, only the wild-type allele was transmitted, suggesting the possibility of dominant lethality. Analysis of chimeric embryos with high level of ES cell contribution revealed severe growth retardation and morphological defects by E8.5-E9.5. The second allele was also targeted, and embryos derived almost entirely from the homozygous mutant ES cells exhibited the same lethal phenotype as observed with heterozygous chimeras. Together, these results indicate that dominant lethality associated with the secreted NCAM does not require the presence of membrane-associated NCAM. Furthermore, the data indicate that potent bioactive cues or signals can be generated by NCAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variable immunoglobulin (Ig) domains contain hypervariable regions that are involved in the formation of the antigen binding site. Besides the canonical antigen binding site, so-called unconventional sites also reside in the variable region that bind bacterial and viral proteins. Docking to these unconventional sites does not typically interfere with antigen binding, which suggests that these sites may be a part of the biological functions of Igs. Herein, a novel unconventional binding site is described. The site is detected with 8-azidopurine nucleotide photoaffinity probes that label antibodies efficiently and under mild conditions. Tryptic peptides were isolated from photolabeled monoclonal antibodies and aligned with the variable antibody domains of heavy and light chains. The structure of a variable Ig fragment was used to model the binding of the purine nucleotide to invariant residues in a hydrophobic pocket of the Ig molecule at a location distant from the antigen binding site. Monoclonal and polyclonal antibodies were biotinylated with the photoaffinity linker and used in fluorescence-activated cell sorter and ELISA analyses. The data support the utility of this site for tethering diagnostic and therapeutic agents to the variable Ig fragment region without impairing the structural and functional integrity of antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of the human PAX-5 locus and of the 5' region of the mouse Pax-5 gene revealed that transcription from two distinct promoters results in splicing of two alternative 5' exons to the common coding sequences of exons 2-10. Transcription from the upstream promoter initiates downstream of a TATA box and occurs predominantly in B-lymphocytes, whereas the TATA-less downstream promoter is active in all Pax-5-expressing tissues. The human PAX-5 gene is located on chromosome 9 in region p13, which is involved in t(9;14)(pl3;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype and in derived large-cell lymphomas. A previous molecular analysis of a t(9;14) breakpoint from a diffuse large-cell lymphoma (KIS-1) demonstrated that the immunoglobulin heavy-chain (IgH) locus on 14q32 was juxtaposed to chromosome 9p13 sequences of unknown function [Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T. & Honjo, T. (1990) Proc. Natl. Acad. Sci. USA 87,628-632]. Here we show that the KIS-1 translocation breakpoint is located 1807 base pairs upstream of exon 1A of PAX-5, thus bringing the potent Emu enhancer of the IgH gene into close proximity of the PAX-5 promoters. These data suggest that deregulation of PAX-5 gene transcription by the t(9;14)(pl3;q32) translocation contributes to the pathogenesis of small lymphocytic lymphomas with plasmacytoid differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach of comparing protein structures that does not involve the procedure of superposition is suggested. An invariant system of coordinates for immunoglobulin molecules that is based on the geometrical symmetry inherent to the variable domain light-chain (VL)-heavy-chain (VH) complex is described. The coordinates of the Calpha atoms in 22 immunoglobulin structures are calculated in the invariant system of coordinates. We found that 76 identical positions in this Calpha framework are symmetrical about the twofold axis. Comparison of the identical positions in these molecules allows us to select 96 positions in the light chains and 87 positions in the heavy chains whose Calpha atom coordinates are approximately the same. To check whether the average coordinates of Calpha atoms in these positions complies with the stereochemical requirements, we calculated Calpha-Calpha distances. Seventy-three positions of the light chains and 72 positions of the heavy chains satisfy the Calpha-Calpha distance criterion. The Calpha atoms in these positions are used for constructing the "standard" Calpha framework of VL and VH complexes. The average coordinates of Calpha atoms are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BEN/SC1/DM-GRASP is a membrane glycoprotein of the immunoglobulin superfamily isolated in the chick by several groups, including ours. Its expression is strictly developmentally regulated in several cell types of the nervous and hemopoietic systems and in certain epithelia. Each of these cell types expresses isoforms of BEN which differ by their level of N-glycosylation and by the presence or absence of the HNK-1 carbohydrate epitope. In the present work, the influence of glycosylation on BEN homophilic binding properties was investigated by two in vitro assays. First, each BEN isoform was covalently coupled to microspheres carrying different fluorescent dyes and an aggregation test was performed. We found that homophilic aggregates form indifferently between the same or different BEN isoforms, showing that glycosylation does not affect BEN homophilic binding properties. This was confirmed in the second test, where the BEN-coated microspheres bound to the neurites of BEN- expressing neurons, irrespective of the isoform considered. The transient expression of the BEN antigen on hemopoietic progenitors prompted us to see whether it might play a role in their proliferation and differentiation. When added to hemopoietic progenitor cells in an in vitro colony formation assay anti-BEN immunoglobulin strongly inhibited myeloid, but not erythroid, colony formation although both types of precursors express the molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joining (J) chain is a component of polymeric, but not monomeric, immunoglobulin (Ig) molecules and may play a role in their polymerization and transport across epithelial cells. To date, study of the J chain has been confined to vertebrates that produce Ig and in which the J chain displays a considerable degree of structural homology. The role of the J chain in Ig polymerization has been questioned and, since the J chain can be expressed in lymphoid cells that do not produce Ig, it is possible that the J chain may have other functions. To explore this possibility, we have surveyed J-chain gene, mRNA, and protein expression by using reverse transcriptase-coupled PCR, Northern blot analysis, and immunoblot analysis in invertebrate species that do not produce Ig. We report that the J-chain gene is expressed in invertebrates (Mollusca, Annelida, Arthropoda, Echinodermata, and Holothuroidea), as well as in representative vertebrates (Mammalia, Teleostei, Amphibia). Furthermore, J-chain cDNA from the earthworm has a high degree of homology (68-76%) to human, mouse, and bovine J chains. Immunohistochemical studies reveal that the J chain is localized in the mucous cells of body surfaces, intestinal epithelial cells, and macrophage-like cells of the earthworm and slug. This study suggests that the J chain is a primitive polypeptide that arose before the evolution of Ig molecules and remains highly conserved in extent invertebrates and vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney.