926 resultados para Image processing -- Digital techniques -- Mathematical models
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
In recent years there is an apparent shift in research from content based image retrieval (CBIR) to automatic image annotation in order to bridge the gap between low level features and high level semantics of images. Automatic Image Annotation (AIA) techniques facilitate extraction of high level semantic concepts from images by machine learning techniques. Many AIA techniques use feature analysis as the first step to identify the objects in the image. However, the high dimensional image features make the performance of the system worse. This paper describes and evaluates an automatic image annotation framework which uses SURF descriptors to select right number of features and right features for annotation. The proposed framework uses a hybrid approach in which k-means clustering is used in the training phase and fuzzy K-NN classification in the annotation phase. The performance of the system is evaluated using standard metrics.
Resumo:
As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination
Resumo:
The standard separable two dimensional wavelet transform has achieved a great success in image denoising applications due to its sparse representation of images. However it fails to capture efficiently the anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet transform called directionlet is presented. The image denoising in wavelet domain has been extended to the directionlet domain to make the image features to concentrate on fewer coefficients so that more effective thresholding is possible. The image is first segmented and the dominant direction of each segment is identified to make a directional map. Then according to the directional map, the directionlet transform is taken along the dominant direction of the selected segment. The decomposed images with directional energy are used for scale dependent subband adaptive optimal threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and visual quality
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals
Resumo:
Heilkräuter sind während des Trocknungsprozesses zahlreichen Einflüssen ausgesetzt, welche die Qualität des Endproduktes entscheidend beeinflussen. Diese Forschungsarbeit beschäftigt sich mit der Trocknung von Zitronenmelisse (Melissa officinalis .L) zu einem qualitativ hochwertigen Endprodukt. Es werden Strategien zur Trocknung vorgeschlagen, die experimentelle und mathematische Aspekte mit einbeziehen, um bei einer adäquaten Produktivität die erforderlichen Qualitätsmerkmale im Hinblick auf Farbeänderung und Gehalt an ätherischen Ölen zu erzielen. Getrocknete Zitronenmelisse kann zurzeit, auf Grund verschiedener Probleme beim Trocknungsvorgang, den hohen Qualitätsanforderungen des Marktes nicht immer genügen. Es gibt keine standardisierten Informationen zu den einzelnen und komplexen Trocknungsparametern. In der Praxis beruht die Trocknung auf Erfahrungswerten, bzw. werden Vorgehensweisen bei der Trocknung anderer Pflanzen kopiert, und oftmals ist die Trocknung nicht reproduzierbar, oder beruht auf subjektiven Annäherungen. Als Folge dieser nicht angepassten Wahl der Trocknungsparameter entstehen oftmals Probleme wie eine Übertrocknung, was zu erhöhten Bruchverlusten der Blattmasse führt, oder eine zu geringe Trocknung, was wiederum einen zu hohen Endfeuchtegehalt im Produkt zur Folge hat. Dies wiederum mündet zwangsläufig in einer nicht vertretbaren Farbänderung und einen übermäßigen Verlust an ätherischen Ölen. Auf Grund der unterschiedlichen thermischen und mechanischen Eigenschaften von Blättern und Stängel, ist eine ungleichmäßige Trocknung die Regel. Es wird außerdem eine unnötig lange Trocknungsdauer beobachtet, die zu einem erhöhten Energieverbrauch führt. Das Trocknen in solaren Tunneln Trocknern bringt folgendes Problem mit sich: wegen des ungeregelten Strahlungseinfalles ist es schwierig die Trocknungstemperatur zu regulieren. Ebenso beeinflusst die Strahlung die Farbe des Produktes auf Grund von photochemischen Reaktionen. Zusätzlich erzeugen die hohen Schwankungen der Strahlung, der Temperatur und der Luftfeuchtigkeit instabile Bedingungen für eine gleichmäßige und kontrollierbare Trocknung. In Anbetracht der erwähnten Probleme werden folgende Forschungsschwerpunkte in dieser Arbeit gesetzt: neue Strategien zur Verbesserung der Qualität werden entwickelt, mit dem Ziel die Trocknungszeit und den Energieverbrauch zu verringern. Um eine Methodik vorzuschlagen, die auf optimalen Trocknungsparameter beruht, wurden Temperatur und Luftfeuchtigkeit als Variable in Abhängigkeit der Trocknungszeit, des ätherischer Ölgehaltes, der Farbänderung und der erforderliche Energie betrachtet. Außerdem wurden die genannten Parametern und deren Auswirkungen auf die Qualitätsmerkmale in solaren Tunnel Trocknern analysiert. Um diese Ziele zu erreichen, wurden unterschiedliche Ansätze verfolgt. Die Sorption-Isothermen und die Trocknungskinetik von Zitronenmelisse und deren entsprechende Anpassung an verschiedene mathematische Modelle wurden erarbeitet. Ebenso wurde eine alternative gestaffelte Trocknung in gestufte Schritte vorgenommen, um die Qualität des Endproduktes zu erhöhen und gleichzeitig den Gesamtenergieverbrauch zu senken. Zusätzlich wurde ein statistischer Versuchsplan nach der CCD-Methode (Central Composite Design) und der RSM-Methode (Response Surface Methodology) vorgeschlagen, um die gewünschten Qualitätsmerkmalen und den notwendigen Energieeinsatz in Abhängigkeit von Lufttemperatur und Luftfeuchtigkeit zu erzielen. Anhand der gewonnenen Daten wurden Regressionsmodelle erzeugt, und das Verhalten des Trocknungsverfahrens wurde beschrieben. Schließlich wurde eine statistische DOE-Versuchsplanung (design of experiments) angewandt, um den Einfluss der Parameter auf die zu erzielende Produktqualität in einem solaren Tunnel Trockner zu bewerten. Die Wirkungen der Beschattung, der Lage im Tunnel, des Befüllungsgrades und der Luftgeschwindigkeit auf Trocknungszeit, Farbänderung und dem Gehalt an ätherischem Öl, wurde analysiert. Ebenso wurden entsprechende Regressionsmodelle bei der Anwendung in solaren Tunneltrocknern erarbeitet. Die wesentlichen Ergebnisse werden in Bezug auf optimale Trocknungsparameter in Bezug auf Qualität und Energieverbrauch analysiert.
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.
Resumo:
We develop efficient techniques for the non-rigid registration of medical images by using representations that adapt to the anatomy found in such images. Images of anatomical structures typically have uniform intensity interiors and smooth boundaries. We create methods to represent such regions compactly using tetrahedra. Unlike voxel-based representations, tetrahedra can accurately describe the expected smooth surfaces of medical objects. Furthermore, the interior of such objects can be represented using a small number of tetrahedra. Rather than describing a medical object using tens of thousands of voxels, our representations generally contain only a few thousand elements. Tetrahedra facilitate the creation of efficient non-rigid registration algorithms based on finite element methods (FEM). We create a fast, FEM-based method to non-rigidly register segmented anatomical structures from two subjects. Using our compact tetrahedral representations, this method generally requires less than one minute of processing time on a desktop PC. We also create a novel method for the non-rigid registration of gray scale images. To facilitate a fast method, we create a tetrahedral representation of a displacement field that automatically adapts to both the anatomy in an image and to the displacement field. The resulting algorithm has a computational cost that is dominated by the number of nodes in the mesh (about 10,000), rather than the number of voxels in an image (nearly 10,000,000). For many non-rigid registration problems, we can find a transformation from one image to another in five minutes. This speed is important as it allows use of the algorithm during surgery. We apply our algorithms to find correlations between the shape of anatomical structures and the presence of schizophrenia. We show that a study based on our representations outperforms studies based on other representations. We also use the results of our non-rigid registration algorithm as the basis of a segmentation algorithm. That algorithm also outperforms other methods in our tests, producing smoother segmentations and more accurately reproducing manual segmentations.
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region
Resumo:
Creació d'un entorn de treball per tal de visualitzar models tridimensionals en temps real amb dos objectius: proporcionar una interfície gràfica per poder visualitzar interactivament una escena, modificant-ne els seus elements i aconseguir un disseny que faci el projecte altament revisable i reutilitzable en el futur, i serveixi per tant de plataforma per provar altres projectes
Resumo:
We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
Conjunt d'articles amb anàlisis i reflexions sobre la incertesa i els imprevistos en l'àmbit de la tècnica des de diferents punts de vista
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos