977 resultados para Image compression


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Métodos estocásticos oferecem uma poderosa ferramenta para a execução da compressão de dados e decomposições de matrizes. O método estocástico para decomposição de matrizes estudado utiliza amostragem aleatória para identificar um subespaço que captura a imagem de uma matriz de forma aproximada, preservando uma parte de sua informação essencial. Estas aproximações compactam a informação possibilitando a resolução de problemas práticos de maneira eficiente. Nesta dissertação é calculada uma decomposição em valores singulares (SVD) utilizando técnicas estocásticas. Esta SVD aleatória é empregada na tarefa de reconhecimento de faces. O reconhecimento de faces funciona de forma a projetar imagens de faces sobre um espaço de características que melhor descreve a variação de imagens de faces conhecidas. Estas características significantes são conhecidas como autofaces, pois são os autovetores de uma matriz associada a um conjunto de faces. Essa projeção caracteriza aproximadamente a face de um indivíduo por uma soma ponderada das autofaces características. Assim, a tarefa de reconhecimento de uma nova face consiste em comparar os pesos de sua projeção com os pesos da projeção de indivíduos conhecidos. A análise de componentes principais (PCA) é um método muito utilizado para determinar as autofaces características, este fornece as autofaces que representam maior variabilidade de informação de um conjunto de faces. Nesta dissertação verificamos a qualidade das autofaces obtidas pela SVD aleatória (que são os vetores singulares à esquerda de uma matriz contendo as imagens) por comparação de similaridade com as autofaces obtidas pela PCA. Para tanto, foram utilizados dois bancos de imagens, com tamanhos diferentes, e aplicadas diversas amostragens aleatórias sobre a matriz contendo as imagens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas turbine compression systems are required to perform adequately over a range of operating conditions. Complexity has encouraged the conventional design process for compressors to focus initially on one operating point, usually the most commonor arduous, to draw up an outline design. Generally, only as this initial design is refined is its offdesign performance assessed in detail. Not only does this necessarily introduce a potentially costly and timeconsuming extra loop in the design process, but it also may result in a design whose offdesign behavior is suboptimal. Aversion of nonintrusive polynomial chaos was previously developed in which a set of orthonormal polynomials was generated to facilitate a rapid analysis of robustness in the presence of generic uncertainties with good accuracy. In this paper, this analysis method is incorporated in real time into the design process for the compression system of a three-shaft gas turbine aeroengine. This approach to robust optimization is shown to lead to designs that exhibit consistently improved system performance with reduced sensitivity to offdesign operation.