928 resultados para IR and Raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A necessidade de redução da emissão de poluentes, visando diminuir os sérios problemas de poluição atmosférica enfrentados atualmente, é hoje uma das principais preocupações mundiais, provocando o surgimento de leis mais rígidas, que restringem o teor de enxofre na gasolina e no diesel. Assim, o desenvolvimento de tecnologias mais eficazes na remoção de enxofre nestes combustíveis tem recebido atenção crescente. Estas tecnologias incluem a extração física com solvente, a adsorção seletiva, processos de redução/oxidação microbiológicos e a dessulfurização oxidativa (ODS). A dessulfurização oxidativa converte os compostos de enxofre em sulfonas que podem ser facilmente separadas por processos físicos. Portanto, a ODS apresenta grande potencial para tornar-se um processo complementar a processo de hidrodessulfurização tradicional na produção de combustíveis altamente dessulfurizados. Neste contexto, este trabalho visou o estudo do desempenho de catalisadores de V2O5 suportados em alumina, sílica e sílica-alumina frente à reação de ODS do dibenzotiofeno em presença do peróxido de hidrogênio, como oxidante, e da acetonitrila, como solvente polar aprótico. Os catalisadores foram preparados por impregnação ao ponto úmido e caracterizados por difração de raios-X (DRX), análise textural, redução à temperatura programada (TPR-H2), dessorção de amônia à temperatura programa (TPD-NH3) e espectroscopia Raman. O efeito de parâmetros reacionais como quantidade de solvente, relação O/S e concentração de catalisador foram investigados, utilizando a alumina como suporte, visando estabelecer as condições reacionais que levassem a maiores valores de conversão do dibenzotiofeno (DBT). Uma vez estabelecidas estas condições, foi analisado o efeito do teor de V2O5 presente no catalisador e, posteriormente, o efeito do suporte catalítico. Os resultados obtidos mostraram a 70 C razão molar H2O2/Sde 16,6, razão carga/solvente igual a 1:1 e 100 mg do catalisador 15 % V2O5/SiO2, a conversão obtida foi de 95%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition using optical microscopy, high resolution transmission electron microscopy and Raman spectroscopy. We find that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence we regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. HfO2 nanoparticles coated with few layer graphene by atmospheric pressure CVD with methane and hydrogen at 950 °C. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition (CVD) is studied. It is found that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence the authors of this Letter regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the acoustic characterization of a layer of carbon nanotubes (CNT) deposited on AlN solidly mounted resonators is described. The structure of the CNT layer is analyzed by scanning electron microscopy and Raman spectroscopy. The electrical sheet resistance is derived from 4 point probe measurements and from the fitting of the electrical response of the resonators. Values of sheet resistance around 100 Ω/□ are measured. The longitudinal acoustic velocity is derived from the fitting of the electrical response of the resonators using Mason's model, by adjusting the overtones produced in the CNT layer. A mean value of 62000 m·s-1 is obtained, although some devices show values around 90000 m·s -1, close to the theoretical value of 100000 m·s-1. Some results on the deposition of CNT layers on metallic top electrodes and their influence on the performance of the resonator are also presented. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemiluminescence (ECL) sensor based on Ru(bpy)(3)(2+)-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)(3)(2+), but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)(3)(2+) into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 x 10(-7) to 1 x 10(-4) M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new phosphate, KMgY(PO4)(2), isostructural with xenotime, was firstly reported in detail. It crystallizes in tetragonal system with space group I4(1)/amd (No. 141). The cell parameters were obtained from X-ray powder diffraction data with a=0.6886, c=0.6025 nm, 2=2. The proposed structure of KMgY(PO4)(2) was further confirmed by its vibrational spectra, IR and Raman spectra, which were also compared with those of iso-structural YPO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary medical science is reliant upon the rational selection and utilization of devices, and therefore, an increasing need has developed for in vitro systems aimed at replicating the conditions to which urological devices will be subjected to during their use in vivo. We report the development and validation of a novel continuous flow encrustation model based on the commercially available CDC biofilm reactor. Proteus mirabilis-induced encrustation formation on test biomaterial sections under varying experimental parameters was analyzed by X-ray diffraction, infrared- and Raman spectroscopy and by scanning electron microscopy. The model system produced encrusted deposits similar to those observed in archived clinical samples. Results obtained for the system are highly reproducible with encrustation being rapidly deposited on test biomaterial sections. This model will have utility in the rapid screening of encrustation behavior of biomaterials for use in urological applications. (C) 2010 Wiley Periodicals. Inc. J Biomed Mater Res Part B: Appl Biomater 93B: 128-140, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid molecular dispersions of bicalutamide (BL) and polyvinylpyrrolidone (PVP) were prepared by hot melt extrusion technology at drug-to-polymer ratios of 1:10, 2:10, and 3:10 (w/w). The solid-state properties of BL, physical mixtures of BL/PVP, and hot melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. Drug dissolution studies were subsequently conducted on hot melt extruded solid dispersions and physical mixtures. All hot melt extrudates had a single Tg between theTg of amorphous BL and PVP indicating miscibility of BL with PVP and the formation of solid molecular dispersions. PXRD con?rmed the presence of the amorphous form of BL within the extrudates. Conversely, PXRD patterns recorded for physical mixtures showed sharp bands characteristic of crystalline BL, whereas DSC traces had a distinct endotherm at 1968C corresponding to melting of crystalline BL. Further investigations using DSC con?rmed solid-state plasticization of PVP by amorphous BL and hence antiplasticization of amorphous BL by PVP. Experimentally observed Tg values of physical mixtures were shown to be signi?cantly higher than those calculated using the Gordon–Taylor equation suggesting the formation of strong intermolecular interactions between BL and PVP. FTIR and Raman spectroscopy were used to investigate these interactions and strongly suggested the presence of secondary interaction between PVP and BL within the hot melt extrudates. The drug dissolution properties of hot melt extrudates were enhanced signi?cantly in comparison to crystalline BL and physical mixtures. Moreover, the rate and extent of BL release were highly dependent on the amount of PVP present within the extrudate. Storage of the extrudates con?rmed the stability of amorphous BL for up to 12 months at 208C, 40% RH whereas stability was reduced under highly humid conditions (208C, 65% RH). Interestingly, BL recrystallization after storage under these conditions had no effect on the dissolution properties of the extrudates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study thermodynamically stable dispersions of amorphous quinine, a model BCS class 2 therapeutic agent, within an amorphous polymeric platform (HPC), termed a solid-in-solid dispersion, were produced using hot melt extrusion. Characterisation of the pre-extrudates and extrudates was performed using hyper-differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Raman spectroscopy. Water uptake by the raw materials was determined using dynamic vapour sorption (DVS) analysis. Furthermore, the presence or absence of crystalline drug following storage at 25 °C/60% relative humidity and 40 °C/75% relative humidity in a sealed glass jar, and at 40 °C/75% relative humidity in an open glass jar for 3 months was determined using PXRD. Amorphous quinine was generated in situ during extrusion from both quinine base (5%, 10%, 20% w/w drug loading) and from quinine hydrochloride (5%, 10% w/w drug loading) and remained thermodynamically stable as a solid-in-solid dispersion within the HPC extrudates. When processed with HPC, quinine hydrochloride (20% w/w) was converted to amorphous quinine hydrochloride. Whilst stable for up to 3 months when stored under sealed conditions, this amorphous form was unstable, resulting in recrystallisation of the hydrochloride salt following storage for 1 month at 40 °C/75% relative humidity in an open glass jar. The behaviour of the amorphous quinine hydrochloride (20% w/w) HPC extrudate was related, at least in part, to the lower stability and the hygroscopic properties of this amorphous form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procura de materiais com elevada constante dieléctrica (E’) motivou nos últimos anos uma intensa pesquisa neste domínio. Entre as várias aplicações destes materiais destacam-se os dispositivos de memória baseados em componentes capacitivos, como as DRAM, em que o valor da constante dieléctrica estática (Es) determina o seu nível de miniaturização. Entre estes materiais, o CaCu3Ti4O12 (CCTO) tem sido apontado como sendo bastante interessante na perspectiva das aplicações tecnológicas e do ponto de vista científico. O CCTO tem a estrutura da perovsquite, apresentando valores elevados de E’ e uma grande estabilidade numa vasta gama de temperaturas (100 – 400 K) e frequências (100 Hz – 1 MHz). Contudo, as elevadas perdas dieléctricas (tan ) têm sido um entrave à sua aplicação tecnológica. Neste trabalho foram preparados materiais derivados do CCTO pelos métodos de reacção do estado sólido, sol-gel e fusão de zona com laser, com o principal objectivo de optimizar as amostras preparadas ao nível estrutural e morfológico, de modo a reduzir tan e aumentar a gama de frequências na qual se verifique E’colossal. Do ponto de vista da sua caracterização estrutural e morfológica usaram-se técnicas de difracção de raios X, microscopia electrónica de varrimento, espectroscopia de dispersão de raios X e espectroscopia de Raman. Para a caracterização eléctrica foram medidas a condutividade ac e dc, a impedância complexa e E’ em função da temperatura e frequência. As medidas dieléctricas mostraram a existência de mecanismos de relaxação, que foram ajustados usando o modelo de Cole-Cole. Discutiu-se a correlação entre os parâmetros de relaxação obtidos e os resultados estruturais das amostras. Atendendo a que o mecanismo de polarização que está na origem das propriedades incomuns do CCTO ainda permanece em discussão, foram produzidas amostras com uma grande diversidade morfológica, variando as condições de síntese. Foram ainda dopadas amostras de CCTO com os óxidos TeO2 e GeO2. Constatou-se que a resposta dieléctrica das amostras de CCTO policristalinas é muito dependente do tamanho de grão. Em regra, verificou-se o aumento de Es e a diminuição da resistência dos grãos e fronteiras de grão com o aumento do tamanho de grão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of the growth of Cu-Sn-S ternary chalcogenide compounds by sulfurization of dc magnetron sputtered metallic precursors. Tetragonal Cu2SnS3 forms for a maximum sulfurization temperature of 350 ºC. Cubic Cu2SnS3 is obtained at sulfurization temperatures above 400 ºC. These results are supported by XRD analysis and Raman spectroscopy measurements. The latter analysis shows peaks at 336 cm-1, 351 cm-1 for tetragonal Cu2SnS3, and 303 cm-1, 355 cm-1 for cubic Cu2SnS3. Optical analysis shows that this phase change lowers the band gap from 1.35 eV to 0.98 eV. At higher sulfurization temperatures increased loss of Sn is expected in the sulphide form. As a consequence, higher Cu content ternary compounds like Cu3SnS4 grow. In these conditions, XRD and Raman analysis only detected orthorhombic (Pmn21) phase (petrukite). This compound has Raman peaks at 318 cm-1, 348 cm-1 and 295 cm-1. For a sulfurization temperature of 450 ºC the samples present a multi-phase structure mainly composed by cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4. For higher temperatures, the samples are single phase and constituted by orthorhombic (Pmn21) Cu3SnS4. Transmittance and reflectance measurements were used to estimate a band gap of 1.60 eV. For comparison we also include the results for Cu2ZnSnS4 obtained using similar growth conditions.