977 resultados para INFRARED
Resumo:
We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.
Resumo:
Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No ""cosmic scatter"" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.
Resumo:
A large sample of Herbig Ae/Be (HAeBe) candidates, distributed in different Galactic regions south to declination +30 degrees, were identified by the Pico dos Dias Survey (a search for young stellar objects based on IRAS colors). Most of the candidates are nearby or associated with star-forming clouds, but several others are considered isolated objects. Aiming to verify the young nature of 93 HAeBe candidates, we searched for additional information that could be useful to confirm if they are pre-main-sequence (PMS) stars or evolved objects, which coincidentally show similar IRAS colors. By adopting a spectral index that is related to the amount of infrared excess and the shape of the spectral energy distribution, we have classified the sample according to three groups, which are analyzed on the basis of (1) circumstellar luminosity; (2) spatial distribution; (3) optical polarization; (4) near-infrared colors; (5) stellar parameters (mass, age, effective temperature); and (5) intensity of emission lines. Our analysis indicates that only 76% of the studied sample, mainly the group with intermediate to low levels of circumstellar emission, can be more confidently considered PMS stars. The nature of the remaining stars, which are in the other group that contains the highest levels of infrared excess, remains to be confirmed. They share the same characteristics of evolved objects, requiring complementary studies in order to correctly classify them. At least seven objects show characteristics typical of post-asymptotic giant branch or proto-planetary nebulae.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Context. Compact groups of galaxies are entities that have high densities of galaxies and serve as laboratories to study galaxy interactions, intergalactic star formation and galaxy evolution. Aims. The main goal of this study is to search for young objects in the intragroup medium of seven compact groups of galaxies: HCG 2, 7, 22, 23, 92, 100 and NGC 92 as well as to evaluate the stage of interaction of each group. Methods. We used Fabry-Perot velocity fields and rotation curves together with GALEX NUV and FUV images and optical R-band and HI maps. Results. (i) HCG 7 and HCG 23 are in early stages of interaction; (ii) HCG 2 and HCG 22 are mildly interacting; and (iii) HCG 92, HCG 100 and NGC 92 are in late stages of evolution. We find that all three evolved groups contain populations of young blue objects in the intragroup medium, consistent with ages < 100 Myr, of which several are younger than < 10 Myr. We also report the discovery of a tidal dwarf galaxy candidate in the tail of NGC 92. These three groups, besides containing galaxies that have peculiar velocity fields, also show extended HI tails. Conclusions. Our results indicate that the advanced stage of evolution of a group, together with the presence of intragroup HI clouds, may lead to star formation in the intragroup medium. A table containing all intergalactic HII regions and tidal dwarf galaxies confirmed to date is appended.
Resumo:
Aims. The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods. We analyzed images obtained with the ROSAT satellite, covering similar to 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which similar to 40 members are added. The other, which we name the ""GU CMa"" cluster, is new, and contains similar to 60 members. The ROSAT sources are young stars with masses down to M(star) similar to 0.5 M(circle dot), and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
Aims. We report the discovery of very shallow (Delta F/F approximate to 3.4 x 10(-4)), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 '' or triple systems are almost excluded with a 8 x 10(-4) risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 x 10(-5) day and a radius of R(p) = 1.68 +/- 0.09 R(Earth). Analysis of preliminary radial velocity data yields an upper limit of 21 M(Earth) for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, approximate to 1800-2600 K at the substellar point, and a very low one, approximate to 50 K, on its dark face assuming no atmosphere, have been derived.
Resumo:
Context. Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. The underlying structural and dynamical variations of the disks are only partly understood. From observations of the bright Be-shell star. Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. Aims. The dense, long-time monitoring permits a better separation of repetitive and ephemeral variations. The broad wavelength coverage includes lines formed under different physical conditions, i.e. different locations in the disk, so that the dynamics can be probed throughout much of the disk. Polarimetry and interferometry constrain the spatial structure. All together, the objective is a better understand the dynamics and life cycle of decretion disks. Methods. Standard methods of data acquisition, reduction, and analysis were applied. Results. From 3 V/R cycles between 1997 and 2008, a mean cycle length in Ha of 1400-1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase may make the strongest contribution to the variability in cycle length. There is no obvious connection between the V/R cycle and the 133-day orbital period of the not otherwise detected companion. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of the equivalent width. They seem to form in separate regions of the disk, probably crossing the line of sight at different times. The interferometry has resolved the continuum and the line emission in Br gamma and HeI 2.06. The phasing of the Br gamma emission shows that the photocenter of the line-emitting region lies within the plane of the disk but is offset from the continuum source. The plane of the disk is constant throughout the observed V/R cycles. The observations lay the foundation for the fully self-consistent, one-armed, disk-oscillation model developed in Paper II.
Resumo:
An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow H(alpha) P-Cygni profile, the absorption component of which has a width of 128 km s (1). This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
Resumo:
Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.
Resumo:
Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5 < [Fe/H] < +0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized. Results. We confirm the well-established differences for [alpha/Fe] at a given metallicity between the local thin and thick disks. For all the elements investigated, we find no chemical distinction between the bulge and the local thick disk, in agreement with our previous study of C, N and O but in contrast to other groups relying on literature values for nearby disk dwarf stars. For -1.5 < [Fe/H] < -0.3 exactly the same trend is followed by both the bulge and thick disk stars, with a star-to-star scatter of only 0.03 dex. Furthermore, both populations share the location of the knee in the [alpha/Fe] vs. [Fe/H] diagram. It still remains to be confirmed that the local thick disk extends to super-solar metallicities as is the case for the bulge. These are the most stringent constraints to date on the chemical similarity of these stellar populations. Conclusions. Our findings suggest that the bulge and local thick disk stars experienced similar formation timescales, star formation rates and initial mass functions, confirming thus the main outcomes of our previous homogeneous analysis of [O/Fe] from infrared spectra for nearly the same sample. The identical a-enhancements of thick disk and bulge stars may reflect a rapid chemical evolution taking place before the bulge and thick disk structures we see today were formed, or it may reflect Galactic orbital migration of inner disk/bulge stars resulting in stars in the solar neighborhood with thick-disk kinematics.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
Context. VISTA Variables in the Via Lactea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of different ages. Aims. In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods. The disk area covered by VVV was visually inspected using the pipeline processed and calibrated K(S)-band tile images for stellar over-densities. Subsequently, we examined the composite JHK(S) and ZJK(S) color images of each candidate. PSF photometry of 15 x 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results. We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams.
Resumo:
Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims. The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods. We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 mu m) and two filters in the Q band (17.65 and 19.50 mu m), using the VLT/VISIR instrument. Results. Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of approximate to 9-10 mu m, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0 '' from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9 '' west of the star, is particularly bright and compact. Conclusions. The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium.