951 resultados para Hydrous niobium phosphate
Resumo:
Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.
Resumo:
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Resumo:
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Resumo:
In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69-/- DCs, which presented an increased migration to peripheral LNs. Two-photon microscopy analysis showed that once DCs reached the LNs, CD69 deficiency did not alter DC interstitial motility in the LNs. Chemotaxis to sphingosine-1-phosphate (S1P) was enhanced in CD69-/- DCs compared with wild-type DCs. Accordingly, we detected a higher expression of S1P receptor type-1 (S1P(1)) by CD69-/- DCs, whereas S1P(3) expression levels were similar in wild-type and CD69-/- DCs. Moreover, in vivo treatment with S1P analogs SEW2871 and FTY720 during skin sensitization reduced skin DC migration to peripheral LNs. These results suggest that CD69 regulates S1P-induced skin DC migration by modulating S1P(1) function. Together, our findings increase our knowledge on DC trafficking patterns in the skin, enabling the development of new directed therapies using DCs for antigen (Ag) delivery.
Resumo:
The aim of this study was to evaluate the 4-year clinical outcomes following regenerative surgery in intrabony defects with either EMD + BCP or EMD. Twenty-four patients with advanced chronic periodontitis, displaying one-, two-, or three-walled intrabony defect with a probing depth of at least 6 mm, were randomly treated with either EMD + BCP (test) or EMD alone (control). The following clinical parameters were evaluated at baseline, at 1 year and at 4 years after regenerative surgery: plaque index, gingival index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. No differences in any of the investigated parameters were observed at baseline between the two groups. The test group demonstrated a mean CAL change from from 10.8 ± 1.6 mm to 7.4 ± 1.6 mm (p < 0.001) and to 7.6 ± 1.7 mm (p < 0.001) at 1 and 4 years, respectively. In the control group, mean CAL changed from 10.4 ± 1.3 at baseline to 6.9 ± 1.0 mm (p < 0.001) at 1 year and 7.2 ± 1.2 mm (p < 0.001) at 4 years. At 4 years, two defects in the test group and three defects in the control group have lost 1 mm of the CAL gained at 1 year. Compared to baseline, at 4 years, a CAL gain of ≥3 mm was measured in 67% of the defects (i.e., in 8 out of 12) in the test group and in 75% of the defects (i.e., in 9 out of 12) in the control group. There were no statistically significant differences in any of the investigated parameters at 1 and at 4 years between the two groups. Within their limits, the present results indicate that: (a) the clinical improvements obtained with both treatments can be maintained over a period of 4 years, and (b) in two- and three-walled intrabony defects, the addition of BCP did not additionally improve the outcomes obtained with EMD alone. In two- and three-walled intrabony defects, the combination of EMD + BCP did not show any advantage over the use of EMD alone.
Resumo:
We investigated the effects of different dietary vitamin D regimen on selected blood parameters in laying hens. Supplementation with vitamin D-3 only was compared with a combination of vitamin D-3 and its metabolite 25-hydroxy-cholecalciferol (25(OH)D-3). Blood concentrations of total calcium, phosphate and 25 (OH)D-3 were determined. Four thousand one-day-old LSL chicks were split in two treatment groups and distributed to eight pens. The control group was given a commercial animal diet containing 2800 IU synthetic vitamin D-3 in the starter feed and 2000 IU synthetic vitamin D-3 in the pullet feed. The experimental group was fed the same commercial diet in which half the synthetic vitamin D-3 content had been substituted with 25(OH)D-3 (Hy center dot D (R)). At 18 weeks of age, pullets were transferred to the layer house. At the ages of 11, 18 and 34 weeks, between 120 and 160 blood samples were collected from both the control and the experimental groups, respectively. The experimental group had higher levels of 25 (OH)D-3 than the control group at all three ages. Serum calcium levels did not differ between the treatment groups at any age. With the onset of laying, calcium levels rose significantly. Whereas blood serum concentration at 18 weeks was 3 mmol/L in both treatment groups, it increased to 8.32 mmol/L in the control group and to 8.66 mmol/L in the experimental group at week 34. At weeks 11 and 34, phosphate was significantly lower in the experimental group. In conclusion, HyD (R) significantly affected serum phosphate and 25(OH)D-3 levels. No effects of (25(OH)D-3 supplementation on performance, shell quality and fractures of keelbones were found.
Resumo:
The vascular disrupting agent (VDA) combretastatin A4 phosphate (CA4P) induces significant tumor necrosis as a single agent. Preclinical models have shown that the addition of an anti-VEGF antibody to a VDA attenuates the revascularization of the surviving tumor rim and thus significantly increases antitumor activity.
Resumo:
Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.
Resumo:
A continuous and highly sensitive absorption method for detection of soluble phosphate in ice cores has been developed using a molybdate reagent and a 2m liquid waveg- uide (LWCC). The method is optimized to meet the low concentrations of phosphate in Greenland ice, it has a detection limit of around 0.1ppb and a depth resolution of approximately 2cm. The new method has been applied to obtain phosphate concen- trations from segments of two Northern Greenland ice cores: from a shallow firn core covering the most recent 120yr and from the recently obtained deep NEEM ice core in which sections from the late glacial period have been analysed. Phosphate con- centrations in 20th century ice are around 0.32ppb with no indication of anthropogenic influence in the most recent ice. In the glacial part of the NEEM ice core concentra- tions in the cold stadial periods are significantly higher, in the range of 6–24ppb, while interstadial ice concentrations are around 2ppb. In the shallow firn core, a strong cor- relation between concentrations of phosphate and insoluble dust suggests a similar deposition pattern for phosphate and dust. In the glacial ice, phosphate and dust also correlate quite strongly, however it is most likely that this correlation originates from the phosphate binding to dust during transport, with only a fraction coming directly from dust. Additionally a constant ratio between phosphate and potassium concentrations shows evidence of a possible biogenic land source.
Resumo:
Clinical application of injectable ceramic cement in comminuted fractures revealed penetration of the viscous paste into the joint space. Not much is known on the fate of this cement and its influence on articular tissues. The purpose of this experimental study was to assess these unknown alterations of joint tissues after intra-articular injection of cement in a rabbit knee. Observation periods were from 1 week up to 24 months, with three rabbits per group. Norian SRS cement was injected into one knee joint, the contralateral side receiving the same volume of Ringers' solution. Light microscopic evaluation of histologic sections was performed, investigating the appearance of the cement, inflammatory reactions, and degenerative changes of the articular surface. No signs of pronounced acute or chronic inflammation were visible. The injected cement was mainly found as a single particle, anterior to the cruciate ligaments. It became surrounded by synovial tissues within 4 weeks and showed signs of superficial resorption. In some specimens, bone formation was seen around the cement. Degeneration of the articular surface showed no differences between experimental and control side, and no changes over time became apparent. No major degenerative changes were induced by the injected cement. The prolonged presence of cement still seems to make it advisable to remove radiologically visible amounts from the joint space.
Resumo:
In recent years sphingolipids have emerged as important signaling molecules regulating fundamental cell responses such as cell death and differentiation, proliferation and aspects of inflammation. Especially ceramide has been a main focus of research since it possesses pro-apoptotic capacity in many cell types. A counterplayer of ceramide was found in sphingosine-1-phosphate (S1P), which is generated from ceramide by the consecutive actions of ceramidase and sphingosine kinase. S1P can potently induce cell proliferation via binding to and activation of the Edg family of receptors which have now been renamed as S1P receptors. Obviously, a delicate balance between ceramide and sphingosine-1-phosphate determines whether cells undergo apoptosis or proliferate, two cell responses that are critically involved in tumor development. Directing the balance in favor of ceramide, i.e. by inhibiting ceramidase or sphingosine kinase activities may support the pro-apoptotic action of ceramide and thus may have beneficial effects in cancer therapy. This review will summarize novel insights into the regulation of sphingolipid formation and their potential involvement in tumor development. Finally, we will pinpoint potential new targets for tumor therapy.
Resumo:
Background During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Methods Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Results Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii) zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii) zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. Conclusion The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require fundamental changes in standard national treatment of cases of P. vivax.