802 resultados para Human Health Risk
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
A key concern in the field of contemporary fashion/textiles design is the emergence of ‘fast fashion’: best explained as "buy it Friday, wear it Saturday and throw it away on Sunday" (O'Loughlin, 2007). In this contemporary retail atmosphere of “pile it high: sell it cheap” and “quick to market”, even designer goods have achieved a throwaway status. This modern culture of consumerism is the antithesis of sustainability and is proving a dilemma surrounding sustainable practice for designers and producers in the disciplines (de Blas, 2010). Design researchers including those in textiles/fashion have begun to explore what is a key question in the 21st century in order to create a vision and reason for their disciplines: Can products be designed to have added value to the consumer and hence contribute to a more sustainable industry? Fashion Textiles Design has much to answer for in contributing to the problems of unsustainable practices on a global scale in design, production and waste. However, designers within this field also have great potential to contribute to practical ‘real world’ solutions. ----- ----- This paper provides an overview of some of the design and technological developments from the fashion/textiles industry, endorsing a model where designers and technicians use their transferrable skills for wellbeing rather than desire. Smart materials in the form of responsive and adaptive fibres and fabrics combined with electro active devices, and ICT are increasingly shaping many aspects of society particularly in the leisure industry and interactive consumer products are ever more visible in healthcare. Combinations of biocompatible delivery devices with bio sensing elements can create analyse, sense and actuate early warning and monitoring systems which can be linked to data logging and patient records via intelligent networks. Patient sympathetic, ‘smart’ fashion/textiles applications based on interdisciplinary expertise utilising textiles design and technology is emerging. An analysis of a series of case studies demonstrates the potential of fashion textiles design practitioners to exploit the concept of value adding through technological garment and textiles applications and enhancement for health and wellbeing and in doing so contribute to a more sustainable future fashion/textiles design industry.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
Stormwater pollution has been recognised as one of the main causes of aquatic ecosystem degradation and poses a significant threat to both the goal of ecological sustainable development as well as human health and wellbeing. In response, water sensitive urban design (WSUD) practices have been put forward as a strategy to mitigate the detrimental impacts of urban stormwater runoff quality and to safeguard ecosystem functions. However, despite studies that support its efficiency in urban stormwater management, the mainstreaming of WSUD remains a significant challenge. This paper proposes that viewing WSUD through the lens of the integrated urban metabolism framework which encourages an interdisciplinary approach and facilitates dialogue through knowledge transfer is a strategy in which the implementation of WSUD can be mainstreamed.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.
Resumo:
School connectedness is “the extent to which students feel personally accepted, respected, included, and supported by others in the school social environment” (Goodenow, 1993, p. 80). It is an important predictor of school violence, as well as related outcomes such as health risk behaviors and mental health. Connectedness reduces initial incidents of violence, buffers the effect of violence exposure, and promotes an anti-bullying culture. School violence and bullying have also been associated with a subsequent decrease in school connectedness. Several theories contribute to our understanding of these relations but the construct, theoretical underpinnings, and pathways in and out of school connectedness require further examination. Despite numerous promising interventions, this line of research is in its infancy. Interventions harnessing this protective factor may have a ubiquitous positive impact on adolescent development.
Resumo:
Climate change, resource depletion and increasing urbanization are converging global issues that are challenging the way we design, construct and operate buildings. The housing sector is a significant contributor to these global issues through consumption of limited resources, waste generation and disposal (solid, liquid and atmospheric waste) and negative human health impacts (Senick 2006). Although the design and construction of ‘sustainable housing’ would appear to be an obvious and technically feasible solution, there remains multi-faceted issues affecting the delivery of sustainable housing (Holloway and Bunker 2006). Two fundamental issues - what makes a house sustainable, and to what extent regulation should be used to deliver sustainability - have been, and continue to be, debated at multiple levels in society. Despite personal, professional and political views on these issues, three key characteristics of the whole housing supply chain require fundamental change if we are to successfully address sustainability challenges (Birkeland 2008). These include: fragmentation; established methods, practices and processes, and the relationships between players. A more in-depth understanding of the role of ethics (values, beliefs and standards) and potential ethical conflicts within the supply chain will assist in better defining the nature of the fundamental changes required...
Resumo:
Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.
Resumo:
Transnational Organised Crime (TOC) has become a focal point for a range of private and public stakeholders. While not a new phenomenon, the rapid expansion of TOC activities and interests, its increasingly complex structures and ability to maximise opportunity by employing new technologies at a rate impossible for law enforcement to match complicates law enforcement’s ability to develop strategies to detect, disrupt, prevent and investigate them. In an age where the role of police has morphed from simplistic response and enforcement activities to one of managing human security risk, it is argued that intelligence can be used to reduce the impact of strategic surprise from evolving criminal threats and environmental change. This review specifically focuses on research that has implications for strategic intelligence and strategy setting in a TOC context. The review findings suggest that current law enforcement intelligence literature focuses narrowly on the management concept of intelligence-led policing in a tactical, operational setting. As such the review identifies central issues surrounding strategic intelligence and highlights key questions that future research agendas must address to improve strategic intelligence outcomes, particularly in the fight against TOC.
Resumo:
In an age where the role of police has morphed from simplistic response and enforcement activities to one of managing human security risk, it is argued that intelligence can be used to reduce the impact of strategic surprise from evolving criminal threats and environmental change. This review specifically focusses on research that has implications for strategic intelligence in law enforcement. The review findings highlight the absence of detailed research of law enforcement strategic intelligence. Findings suggest that current law enforcement intelligence literature focuses narrowly on the management concept of intelligence-led policing in a tactical, operational setting. As a result there is little theory on how to improve strategic intelligence outcomes. This is despite the fact that intelligence –led policing is envisaged as a management tool to guide strategic decision making. the review identifies central issues surrounding strategic intelligence and highlights key questions that future research agendas must address to improve strategic intelligence outcomes
Resumo:
The world is facing problems due to the effects of increased atmospheric pollution, climate change and global warming. Innovative technologies to identify, quantify and assess fluxes exchange of the pollutant gases between the Earth’s surface and atmosphere are required. This paper proposes the development of a gas sensor system for a small UAV to monitor pollutant gases, collect data and geo-locate where the sample was taken. The prototype has two principal systems: a light portable gas sensor and an optional electric–solar powered UAV. The prototype will be suitable to: operate in the lower troposphere (100-500m); collect samples; stamp time and geo-locate each sample. One of the limitations of a small UAV is the limited power available therefore a small and low power consumption payload is designed and built for this research. The specific gases targeted in this research are NO2, mostly produce by traffic, and NH3 from farming, with concentrations above 0.05 ppm and 35 ppm respectively which are harmful to human health. The developed prototype will be a useful tool for scientists to analyse the behaviour and tendencies of pollutant gases producing more realistic models of them.
Resumo:
Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.
Resumo:
Whilst the compression ignition (CI) engine exhibits many design advantages relative to its spark ignition engine counterpart; such as: high thermal efficiency, fuel economy and low carbon monoxide and hydrocarbon emissions, the issue of Diesel Particulate Matter (DPM) emissions continues to be an unresolved problem for the CI engine. Primarily, this thesis investigates a range of DPM mitigation strategies such as alternative fuels, injection technologies and combustion strategies conducted with a view to determine their impact on the physico-chemical properties of DPM emissions, and consequently to shed light on their likely human health impacts. Regulated gaseous emissions, Nitric oxide (NO), Carbon monoxide (CO), and Hydrocarbons (HCs), were measured in all experimental campaigns, although the major focus in this research program was on particulate emissions...
Resumo:
There is significant toxicological evidence of the effects of ultrafine particles (<100nm) on human health (WHO 2005). Studies show that the number concentration of particles has been associated with adverse human health effects (Englert 2004). This work is part of a major study called ‘Ultrafine Particles form Traffic Emissions and Children’s Health’ (UPTECH), which seeks to determine the effect of the exposure to traffic related ultrafine particles on children’s health in schools (http://www.ilaqh.qut.edu.au/Misc/UPT ECH%20Home.htm). Quantification of spatial variation of particle number concentration (PNC) in a microscale environment and identification of the main affecting parameters and their contribution levels are the main aims of this analysis.