950 resultados para Human Genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restless legs syndrome (RLS) is a common multifactorial disease. Some genetic risk factors have been identified. RLS susceptibility also has been related to iron. We therefore asked whether known iron-related genes are candidates for association with RLS and, vice versa, whether known RLS-associated loci influence iron parameters in serum. RLS/control samples (n = 954/1814 in the discovery step, 735/736 in replication 1, and 736/735 in replication 2) were tested for association with SNPs located within 4 Mb intervals surrounding each gene from a list of 111 iron-related genes using a discovery threshold of P = 5 × 10(-4). Two population cohorts (KORA F3 and F4 with together n = 3447) were tested for association of six known RLS loci with iron, ferritin, transferrin, transferrin-saturation, and soluble transferrin receptor. Results were negative. None of the candidate SNPs at the iron-related gene loci was confirmed significantly. An intronic SNP, rs2576036, of KATNAL2 at 18q21.1 was significant in the first (P = 0.00085) but not in the second replication step (joint nominal P-value = 0.044). Especially, rs1800652 (C282Y) in the HFE gene did not associate with RLS. Moreover, SNPs at the known RLS loci did not significantly affect serum iron parameters in the KORA cohorts. In conclusion, the correlation between RLS and iron parameters in serum may be weaker than assumed. Moreover, in a general power analysis, we show that genetic effects are diluted if they are transmitted via an intermediate trait to an end-phenotype. Sample size formulas are provided for small effect sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nephroblastoma or Wilms' tumor is a pediatric renal malignancy that is the most frequently occurring childhood solid tumor. Approximately 1-2% of children with Wilms' tumor also present with aniridia, a congenital absence of all or part of the iris of the eye. These children also have high rates of genitourinary anomalies and mental retardation resulting in what is called the WAGR (Wilms' tumor, aniridia, genitourinary anomaly, mental retardation) syndrome. Cytogenetic analysis of metaphase chromosomes from these patients revealed a consistent deletion of band P13 on chromosome 11. These observations suggest close physical linkage between the disease-related loci, and further imply that development of each phenotype results from the loss of normal gene function.^ The objective of this work is to understand the molecular events at chromosome band 11p13 that are essential to the development of sporadic Wilms' tumor and sporadic aniridia. Two human/hamster somatic cell hybrids have been used to identify sixteen independent DNA probes that map to this segment of the human genome. These newly identified DNA probes and four previously reported probes (CAT, FSHB, D11S16, and HBVIS) have been used to subdivide 11p13 into five intervals defined by overlapping constitutional deletions from several WAGR patients. A long-range physical map of 11p13 has been constructed using each of these probes in Southern blot analysis of genomic DNA after digestion with infrequently cutting restriction enzymes and pulse-field gel electrophoresis. This map, established primarily with MluI and NotI, spans approximately 13 $\times$ 10$\sp{6}$ bp and encompasses deletion and translocation breakpoints associated with genitourinary anomalies, aniridia, and sporadic Wilms' tumor. This complete physical map of human chromosome band 11p13 enables us to localize the genes for sporadic Wilms' tumor and sporadic aniridia to a small number of specific NotI fragments. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human placental lactogen (hPL) is a 22,000 dalton protein hormone produced in the placenta. The physiological actions of hPL are not well understood but its major activity is to regulate both maternal and fetal metabolism. hPL stimulates maternal lipolysis increasing free fatty acids in the maternal blood, allowing their use as an energy source by the mother, and sparing glucose for the fetus. It may also act as a growth promoting hormone for the fetus. hPL is produced in increasing amounts as pregnancy progresses. At term, hPL accounts for 10% of protein and 5% of total RNA in the placenta. This high level of hPL production is tissue-specific, as hPL is only produced in the placenta by syncytiotrophoblast cells.^ The objective of this work was to understand the mechanism by which such high levels of hPL are produced in a tissue-specific manner. A transcriptional enhancer found 2.2 kb 3$\sp\prime$ to one of the hPL genes (hPL$\sb3$) may explain the regulation of hPL expression. Transient transfection experiments using the hPL-producing human choriocarcinoma cell line JEG-3 localized the hPL enhancer to a 138 bp core element. This 138 bp sequence was found to be tissue specific in its actions as it did not promote transcription in heterologous cell lines. Gel mobility shift assays showed the hPL enhancer interacts specifically with nuclear proteins unique to hPL-producing cells. Within the 138 bp enhancer a 22 bp region was shown to be protected from DNase I digestion due to binding of proteins derived from placental nuclear extracts. Proteins binding this region of the enhancer may be instrumental in the tissue specific activity of the hPL enhancer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cmd4 is a colcemid-sensitive CHO cell line that is temperature sensitive for growth and expresses an altered $\beta$-tubulin, $\beta\sb1$. One revertant of this cell line, D2, exhibits a further alteration in $\beta\sb1$ resulting in an acidic shift in its isoelectric point and a decrease in its molecular weight to 40 kD, as measured by two dimensional gel electrophoresis. This $\beta$-tubulin variant has been shown to be assembly-defective and unstable. Characterization of the mutant $\beta\sb1$ in D2 by high pressure liquid chromatography (HPLC) revealed the loss of methionine containing tryptic peptides 7,8,9, and 10. Southern analysis of the genomic DNA digested with several different restriction enzymes resulted in the appearance of new restriction fragments 250 base pairs shorter than the corresponding fragments from the wild-type $\beta\sb1$-tubulin gene. Northern analysis on mRNA from D2 revealed two new message products that also differed by 250 bases from the corresponding wild type $\beta$-tubulin transcripts. To precisely define the region of the alteration, cloning and sequencing of the mutant and wild type genomic $\beta$-tubulin genes were conducted. A size-selected EcoRI genomic library was prepared using the Stratagene lambda Zap II phage cloning system. Using subclones of CHO $\beta$-tubulin cDNA as probes, a 2.5 kb wild type clone and a 2.3 kb mutant clone were identified from this library. Each of these was shown to contain a portion of the gene extending from intron 3 through the end of the coding sequence in exon 4 and into the 3$\sp\prime$ untranslated region on the basis of alignment with the published human $\beta$-tubulin sequence. Sequencing of the mutant 2.3 kb clone revealed that the mutation is due to a 246 base pair internal deletion in exon 4 (base pair 756-1001) that encodes amino acids 253-334. This deletion results in the loss of a putative binding site for GTP which could potentially explain the phenotype of this mutant $\beta$-tubulin. Also sequence comparison of the 3$\sp\prime$ untranslated region between different species revealed the conservation of 200 base pairs with 78% homology. It is proposed that this region could play an important role in the regulation of $\beta$-tubulin gene expression. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonpapillary renal cell carcinoma (RCC) is an adult cancer of the kidney which occurs both in familial and sporadic forms. The familial form of RCC is associated with translocations involving chromosome 3 with a breakpoint at 3p14-p13. Studies focused on sporadic RCC have shown two commonly deleted regions at 3p14.3-p13 and 3p21.3. In addition, a more distal region mapping to 3p26-p25 has been linked to the Von Hippel Lindau (VHL) disease gene. A large proportion of VHL patients develop RCC. The short arm of human chromosome 3 can, therefore, be dissected into three distinct regions which could encode tumor suppressor genes for RCC. Loss or inactivation of one or more of these loci may be an important step in the genesis of RCC.^ I have used the technique of microcell-mediated chromosome transfer to introduce an intact, normal human chromosome 3 and defined fragments of 3p, dominantly marked with pSV2neo, into the highly malignant RCC cell line SN12C.19. The introduction of chromosome 3 and of a centric fragment of 3p, encompassing 3p14-q11, into SN12C.19 resulted in dramatic suppression of tumor growth in nude mice. Another defined deletion hybrid contained the region 3p12-q24 of the introduced human chromosome and failed to suppress tumorigenicity. These data define the region 3p14-p12, the most proximal region of high frequency allele loss in sporadic RCC as well as the region containing the translocation breakpoint in familial RCC, to contain a novel tumor suppressor locus involved in RCC. We have designated this locus nonpapillary renal cell carcinoma-1 (NRC-1). Furthermore, we have functional evidence that NRC-1 controls the growth of RCC cells by inducing rapid cell death in vivo. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries, yet its pathophysiology is incompletely understood. Small-molecule metabolite screens may offer new insights into disease mechanisms and reveal new treatment targets. Methods Discovery (N = 33) and replication (N = 66) of liver biopsies spanning the range from normal liver histology to non-alcoholic steatohepatitis (NASH) were ascertained ensuring rapid freezing under 30 s in patients. 252 metabolites were assessed using GC/MS. Replicated metabolites were evaluated in a murine high-fat diet model of NAFLD. Results In a two-stage metabolic screening, hydroquinone (HQ, pcombined = 3.0 × 10−4) and nicotinic acid (NA, pcombined = 3.9 × 10−9) were inversely correlated with histological NAFLD severity. A murine high-fat diet model of NAFLD demonstrated a protective effect of these two substances against NAFLD: Supplementation with 1% HQ reduced only liver steatosis, whereas 0.6% NA reduced both liver fat content and serum transaminase levels and induced a complex regulatory network of genes linked to NALFD pathogenesis in a global expression pathway analysis. Human nutritional intake of NA equivalent was also consistent with a protective effect of NA against NASH progression. Conclusion This first small-molecular screen of human liver tissue identified two replicated protective metabolites. Either the use of NA or targeting its regulatory pathways might be explored to treat or prevent human NAFLD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor-specific loss of constitutional heterozygosity by deletion, mitotic recombination or nondisjunction is a common mechanism for tumor suppressor allele inactivation. When loss of heterozygosity is the result of mitotic recombination, or a segmental deletion event, only a portion of the chromosome is lost. This information can be used to map the location of new tumor suppressor genes. In osteosarcoma, the highest frequencies of loss of heterozygosity have been reported for chromosomes 3q, 13q, 17p. On chromosomes 13q and 17p, allelic losses are associated with loss of function at the retinoblastoma susceptibility locus (RB1) and the p53 locus, respectively. Chromosome 3q is also of particular interest because the high percent of loss of heterozygosity (62%-75%) suggests the presence of another tumor suppressor important for osteosarcoma tumorigenesis. To localize this putative tumor suppressor gene, we used polymorphic markers on chromosome 3q to find the smallest common region of allele loss. This putative tumor suppressor was localized to a 700 kb region on chromosome 3q26.2 between the polymorphic loci D3S1282 and D3S1246. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations in oncogenes and tumor suppressor genes (TSGs) are considered to be critical steps in oncogenesis. Consistent deletions and loss of heterozygosity (LOH) of polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping TSG. Deletion of the long arm of chromosome 7 (hchr 7) is a frequent trait in many kinds of human primary tumors. LOH was studied with an extensive set of markers on chromosome 7q in several types of human neoplasias (primary breast, prostate, colon, ovarian and head and neck carcinomas) to determine the location of a putative TSG. The extent of LOH varied depending the type of tumor studied but all the LOH curves we obtained had a peak at (C-A)$\sb{\rm n}$ microsatellite repeat D7S522 at 7q31.1 and showed a Gaussian distribution. The high incidence of LOH in all tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on the 7q31.1. To investigate whether the putative TSG is conserved in the syntenic mouse locus, we studied LOH of 30 markers along mouse chromosome 6 (mchr 6) in chemically induced squamous cell carcinomas (SCCs). Tumors were obtained from SENCAR and C57BL/6 x DBA/2 F1 females by a two-stage carcinogenesis protocol. The high incidence of LOH in the tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on mchr 6 A1. Since this segment is syntenic with the hchr 7q31, these data indicate that the putative TSG is conserved in both species. Functional evidence for the existence of a TSG in hchr 7 was obtained by microcell fusion transfer of a single hchr 7 into a murine SCC-derived cell line. Five out of seven hybrids had two to three-fold longer latency periods for in vivo tumorigenicity assays than parental cells. One of the unrepressed hybrids had a deletion in the introduced chromosome 7 involving q31.1-q31.3, confirming the LOH data. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transglutaminases are a family of calcium-dependent enzymes, that catalyze the covalent cross-linking of proteins by forming $\varepsilon(\gamma$-glutamyl)lysine isopeptide bonds. In order to investigate the molecular mechanisms regulating the expression of the tissue transglutaminase gene and to determine its biological functions, the goal of this research has been to clone and characterize the human tissue transglutaminase promoter. Thirteen clones of the tissue transglutaminase gene were obtained from the screening of a human placental genomic DNA library. A 1.74 Kb fragment derived from DNA located immediately upstream of the translation start site was subcloned and sequenced. Sequence analysis of this DNA fragment revealed that it contains a TATA box (TATAA), a CAAT box (GGACAAT), and a series of potential transcription factor binding sites and hormone response elements. Four regions of significant homology, a GC-rich region, a TG-rich region, an AG-rich region, and HR1, were identified by aligning 1.8 Kb of DNA flanking the human, mouse, and guinea pig tissue transglutaminase genes.^ To measure promoter activity, we subcloned the 1.74 Kb fragment of the tissue transglutaminase gene into a luciferase reporter vector to generate transglutaminase promoter/luciferase reporter constructs. Transfection experiments showed that this DNA segment includes a functional promoter with high constitutive activity. Deletion analysis revealed that the SP1 sites or corresponding sequences contribute to this activity. We investigated the role of DNA methylation in regulating the activity of the promoter and found that in vitro methylation of tissue transglutaminase promoter/luciferase reporter constructs suppressed their basal activity. Methylation of the promoter is inversely correlated with the expression of the tissue transglutaminase gene in vivo. These results suggest that DNA methylation may be one of the mechanisms regulating the expression of the gene. The tumor suppressor gene product p53 was also shown to inhibit the activity of the promoter, suggesting that induction of the tissue transglutaminase gene is not involved in the p53-dependent programmed cell death pathway. Although retinoids regulate the expression of the tissue transglutaminase gene in vivo, retinoid-inducible activity can not be identified in 3.7 Kb of DNA 5$\sp\prime$ to the tissue transglutaminase gene.^ The structure of the 5$\sp\prime$ end of the tissue transglutaminase gene was mapped. Alignment analysis of the human tissue transglutaminase gene with other human transglutaminases showed that tissue transglutaminase is the simplest member of transglutaminase superfamily. Transglutaminase genes show a conserved core of exons and introns but diverse N-terminuses and promoters. These observations suggest that key regulatory sequences and promoter elements have been appended upstream of the core transglutaminase gene to generate the diversity of regulated expression and regulated activity characteristic of the transglutaminase gene family. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the evolutionary relationship between human chromosome 16p12-p13 and mouse chromosomes was investigated by determining the order of marker loci in the region and then identifying the chromosomal locations of the homologous loci in mice. Eighteen genes from human 16 were mapped to fifteen subchromosomal regions by a variety of mapping approaches.^ Thirteen of the genes were mapped in the mouse. Linkage analysis with backcross mice and segregation analysis in a mouse - Chinese Hamster Ovary (CHO) somatic cell hybrid panel informative for different regions of mouse genome were used. The results assigned the thirteen genes to three different mouse chromosomes.^ A group of six genes on mouse 16 was found to be closely linked to Scid. The order of Myh11 and Mrp remains ambiguous since no recombination was detected in backcross analysis. Their relative position in human is also uncertain since they were shown to be very close to each other. For the other mouse loci, an unambiguous gene order could be determined and was found to be identical to that in human. Therefore, they comprise a new conserved linkage group between the two species. The orientation of the group was inverted relative to the centromeres, i.e. the proximal loci in one species become distal in another. The size of the group was estimated to be from 4.4 to 8 Mb and 10 to 32 cM in human. In mouse, it was about 21 cM in the backcross analysis. The two boundaries of the conserved linkage were defined within a 1 Mb range. It is now possible to predict the locations of mouse homologs for some human disease genes based on their locations on human 16p.^ The six human 16p genes that map to MMU7 showed a different gene order in mouse than in human. No recombination was found between Crym and Umod while Crym was distal to D16S79A and proximal to D16S92. The location of Stp and Cdr2 with respect to the above four loci was not determined since they were not mapped in the same set of backcross mice. These genes greatly expanded an existing conserved synteny group between the human 16p12-p13 region and the MMU7. It now consists of eleven loci that span a region of probably more than 10 Mb in human. The gene order derived from this study provided further evidence for chromosomal rearrangements within the conserved synteny. (Abstract shortened by UMI.) ^