894 resultados para House, Benjamin
Resumo:
[Jules Ayer]
Resumo:
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Resumo:
The in-house Carba-NP and Blue-Carba tests were compared using 30 carbapenemase- and 33 non-producing Enterobacteriaceae. Tests were read by three operators. 100% sensitivity was reported for both tests, but Carba-NP was slightly more specific than Blue-Carba (98.9% vs. 91.7%). We describe potential sources of error during tests' preparation and reading.
Resumo:
M. Sider
Resumo:
M. Sider
Resumo:
M. Sider
Resumo:
M. Sider
Resumo:
Scan von Monochrom-Mikroform
Resumo:
Scan von Monochrom-Mikroform
Resumo:
Berndt Götz
Resumo:
B. Segalowitsch