776 resultados para Hopfield Neural Network


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

he simulation of complex LoC (Lab-on-a-Chip) devices is a process that requires solving computationally expensive partial differential equations. An interesting alternative uses artificial neural networks for creating computationally feasible models based on MOR techniques. This paper proposes an approach that uses artificial neural networks for designing LoC components considering the artificial neural network topology as an isomorphism of the LoC device topology. The parameters of the trained neural networks are based on equations for modeling microfluidic circuits, analogous to electronic circuits. The neural networks have been trained to behave like AND, OR, Inverter gates. The parameters of the trained neural networks represent the features of LoC devices that behave as the aforementioned gates. This would mean that LoC devices universally compute.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method to study large scale neural networks is presented in this paper. The basis is the use of Feynman- like diagrams. These diagrams allow the analysis of collective and cooperative phenomena with a similar methodology to the employed in the Many Body Problem. The proposed method is applied to a very simple structure composed by an string of neurons with interaction among them. It is shown that a new behavior appears at the end of the row. This behavior is different to the initial dynamics of a single cell. When a feedback is present, as in the case of the hippocampus, this situation becomes more complex with a whole set of new frequencies, different from the proper frequencies of the individual neurons. Application to an optical neural network is reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract This paper presents a new method to extract knowledge from existing data sets, that is, to extract symbolic rules using the weights of an Artificial Neural Network. The method has been applied to a neural network with special architecture named Enhanced Neural Network (ENN). This architecture improves the results that have been obtained with multilayer perceptron (MLP). The relationship among the knowledge stored in the weights, the performance of the network and the new implemented algorithm to acquire rules from the weights is explained. The method itself gives a model to follow in the knowledge acquisition with ENN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seepage flow measurement is an important behavior indicator when providing information about dam performance. The main objective of this study is to analyze seepage by means of an artificial neural network model. The model is trained and validated with data measured at a case study. The dam behavior towards different water level changes is reproduced by the model and a hysteresis phenomenon detected and studied. Artificial neural network models are shown to be a powerful tool for predicting and understanding seepage phenomenon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grouping urban bus routes is necessary when there are evidences of significant differences among them. In Jiménez et al. (2013), a reduced sample of routes was grouped into clusters utilizing kinematic measured data. As a further step, in this paper, the remaining urban bus routes of a city, for which no kinematic measurements are available, are classified. For such purpose we use macroscopic geographical and functional variables to describe each route, while the clustering process is performed by means of a neural network. Limitations caused by reduced training samples are solved using the bootstrap method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a Glucose-Insulin regulator for Type 1 Diabetes using artificial neural networks (ANN) is proposed. This is done using a discrete recurrent high order neural network in order to identify and control a nonlinear dynamical system which represents the pancreas? beta-cells behavior of a virtual patient. The ANN which reproduces and identifies the dynamical behavior system, is configured as series parallel and trained on line using the extended Kalman filter algorithm to achieve a quickly convergence identification in silico. The control objective is to regulate the glucose-insulin level under different glucose inputs and is based on a nonlinear neural block control law. A safety block is included between the control output signal and the virtual patient with type 1 diabetes mellitus. Simulations include a period of three days. Simulation results are compared during the overnight fasting period in Open-Loop (OL) versus Closed- Loop (CL). Tests in Semi-Closed-Loop (SCL) are made feedforward in order to give information to the control algorithm. We conclude the controller is able to drive the glucose to target in overnight periods and the feedforward is necessary to control the postprandial period.