999 resultados para Heat transference
Resumo:
Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.
Resumo:
Unstructured grid meshes used in most commercial CFD codes inevitably adopt collocated variable solution schemes. These schemes have several shortcomings, mainly due to the interpolation of the pressure gradient, that lead to slow convergence. In this publication we show how it is possible to use a much more stable staggered mesh arrangement in an unstructured code. Several alternative groupings of variables are investigated in a search for the optimum scheme.
Resumo:
The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element and volume methods, particularly when the long-time transient behaviour of a system is of interest. The exact solution is obtained at grid collocation points leading to superior accuracy on modest grids. Furthermore, the grid can be freely adapted in time and space to particular flow conditions or geometric variations, especially useful where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free surface. The electromagnetic field determines the instantaneous liquid volume shape, which then affects the electromagnetic field. A general methodology of the pseudo-spectral approach is presented, with several instructive example applications: the aluminium electrolysis MHD problem, induction melting in a cold crucible and the dynamics of AC/DC magnetically levitated droplets. Finally, comparisons with available analytical solutions and to experimental measurements are discussed.
Resumo:
A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems
Resumo:
Numerical simulation of heat transfer in a high aspect ratio rectangular microchannel with heat sinks has been conducted, similar to an experimental study. Three channel heights measuring 0.3 mm, 0.6mmand 1mmare considered and the Reynolds number varies from 300 to 2360, based on the hydraulic diameter. Simulation starts with the validation study on the Nusselt number and the Poiseuille number variations along the channel streamwise direction. It is found that the predicted Nusselt number has shown very good agreement with the theoretical estimation, but some discrepancies are noted in the Poiseuille number comparison. This observation however is in consistent with conclusions made by other researchers for the same flow problem. Simulation continues on the evaluation of heat transfer characteristics, namely the friction factor and the thermal resistance. It is found that noticeable scaling effect happens at small channel height of 0.3 mm and the predicted friction factor agrees fairly well with an experimental based correlation. Present simulation further reveals that the thermal resistance is low at small channel height, indicating that the heat transfer performance can be enhanced with the decrease of the channel height.
Resumo:
This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.
Spectral Response Of A Model Of The English-Channel And Southern North-Sea Heat Budgets 1961 To 1976