839 resultados para Health systems plans
Resumo:
Many water-supply systems in South America utilize the waters of the Guarani aquifer at least as part of their networks. However, there is little present knowledge in Brazil of the factors affecting Rn presence in the water supplied for end-users, despite the economic importance of Guarani aquifer. Rn-222 analyzes of 162 water samples were performed at 8 municipalities in São Paulo State, Brazil, with the aim of investigating the major factors affecting its presence in solution. The Rn-222 activity concentration ranged from 0.04 up to 204.9 Bq/L, with three samples exceeding the World Health Organization maximum limit of 100Bq/L. Aeration was confirmed as the most important factor for Rn release, as expected due to its gaseous nature. Accumulation in pipes and stratification in the water column were other significant factors explaining the data obtained in some circumstances. The Rn daughters Ph-214 and Bi-214 were also determined in a set of selected samples and their presence was directly related to the occurrence of Rn dissolved in water. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
Includes bibliography
Resumo:
The structural health monitoring (SHM) systems based on electromechanical (E/M) impedance technique have been widely investigated. Although many studies indicate the reliability of this technique, some practical considerations still have to be considered in real applications. This paper presents an experimental analysis of the effect of the structure area on the system's performance. The results indicate that the sensitivity of the system to detect damage decreases significantly when the host structure has large cross-section area. Copyright © 2009 by ASME.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Soil is an essential resource for life and its properties are susceptible to be modified by tillage systems. The impact of management practices on soil functions can be assessed through a soil quality index. It is interesting to assess soil quality in different soil types. Therefore, the aim of this study was to determine the soil quality index of a Paleudult under different management conditions and sunflower culture. The experiment was carried out in Botucatu (SP, Brazil), in an 11-year non-tilled area used for growing soybean and maize during summer and black oat or triticale in winter. Four management systems were considered: no-tillage with a hoe planter (NTh), no-tillage with a double-disk planter (NTd), reduced tillage (RT) and conventional tillage (CT). Soil samples were taken from the planting lines at harvest time. To determine the soil quality indices, following the methodology proposed by Karlen and Stott (1994), three main soil functions were assessed: soil capacity for root development, water storage capacity of the soil and nutrient supply capacity of the soil. The studied Paleudult was considered a soil with good quality under all the observed management systems. However, the soil quality indices varied between treatments being 0.64, 0.68, 0.86 and 0.79 under NTh, NTd, RT and CT, respectively. Physical attributes such as resistance to penetration and macroporosity increased the soil quality index in RT and CT compared to NTh and NTd. The soil quality indices obtained suggested that the evaluated soil is adequate for sunflower production under our study conditions. In view of the SQI values, RT is the most suitable management for this site since it preserves soil quality and provides an acceptable sunflower yield. © 2011 Elsevier B.V.
Resumo:
This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.
Resumo:
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.
Resumo:
In this paper we present a versatile and easy-to-assemble measurement system for structural health monitoring (SHM) based on the electromechanical impedance (EMI) technique. The hardware of the proposed system consists only of a common data acquisition (DAQ) device with external resistors and allows real-time data acquisition from multiple sensors. Besides the low-cost compared to conventional impedance analyzers, the hardware and the software are simple and easier to implement than other measurement systems that have been recently proposed.
Resumo:
This clinical study assessed the performance of posterior composite resins applied with the Adper™ Single Bond Plus (SB) and Adper ™ Scotchbond SE (SE) adhesive systems and Filtek ™ Supreme Plus composite resin, using modified US Public Health Service criteria. A total of 97 restorations were placed in posterior teeth by two calibrated operators. Application of the materials followed manufacturers' instructions. The restorations were evaluated by two examiners at baseline and after one year. Statistical analyses were conducted using the proportion test at a significance level of 5% (p<0.05). All the restorations evaluated (ie, 100%) received an alpha rating for the criteria of marginal discoloration and marginal integrity at baseline. At one year, for marginal discoloration, 64.6% of SB and 61.2% of SE received an alpha rating. For marginal integrity, 72.9% of SB and 77.6% of SE received an alpha rating. The other restorations received bravo ratings for both criteria. None of the teeth that received the restorative systems presented caries lesions around the restorations. A total of eight teeth presented postoperative sensitivity one week after baseline, five with SB and three with SE; the symptom had disappeared one year later. One year later, composite resin restorations using either adhesive system showed satisfactory clinical performance.
Resumo:
This paper presents a new approach for damage detection in Structural Health Monitoring (SHM) systems, which is based on the Electromechanical Impedance (EMI) principle and Autoregressive (AR) models. Typical applications of EMI in SHM are based on computing the Frequency Response Function (FRF). In this work the procedure is based on the EMI principle but the results are determined through the coefficients of AR models, which are computed from the time response of PZT transducers bonded to the monitored structure, and acting as actuator and sensors at the same time. The procedure is based on exciting the PZT transducers using a wide band chirp signal and getting its time response. The AR models are obtained in both healthy and damaged conditions and used to compute statistics indexes. Practical tests were carried out in an aluminum plate and the results have demonstrated the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.