761 resultados para Health behavior model
Resumo:
A Geant4 based simulation tool has been developed to perform Monte Carlo modelling of a 6 MV VarianTM iX clinac. The computer aided design interface of Geant4 was used to accurately model the LINAC components, including the Millenium multi-leaf collimators (MLCs). The simulation tool was verified via simulation of standard commissioning dosimetry data acquired with an ionisation chamber in a water phantom. Verification of the MLC model was achieved by simulation of leaf leakage measurements performed using GafchromicTM film in a solid water phantom. An absolute dose calibration capability was added by including a virtual monitor chamber into the simulation. Furthermore, a DICOM-RT interface was integrated with the application to allow the simulation of treatment plans in radiotherapy. The ability of the simulation tool to accurately model leaf movements and doses at each control point was verified by simulation of a widely used intensity-modulated radiation therapy (IMRT) quality assurance (QA) technique, the chair test.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.
Resumo:
Adolescents engage in many risk-taking behaviors that have the potential to lead to injury. The school environment has a significant role in shaping adolescent behavior, and this study aimed to provide additional information about the benefits associated with connectedness to school. Early adolescents aged 13 to 15 years (N = 509, 49% boys) were surveyed about school connectedness, engagement in transport and violence risk-taking, and injury experiences. Significant relations were found between school connectedness and reduced engagement in both transport and violence risk-taking, as well as fewer associated injuries. This study has implications for the area of risk-taking and injury prevention, as it suggests the potential for reducing adolescents' injury through school based interventions targeting school connectedness.
Resumo:
The availability of new information and communication technologies creates opportunities for new, mobile tele-health services. While many promising tele-health projects deliver working R&D prototypes, they often do not result in actual deployment. We aim to identify critical issues than can increase our understanding and enhance the viability of the mobile tele-health services beyond the R&D phase by developing a business model. The present study describes the systematic development and evaluation of a service-oriented business model for tele-monitoring and -treatment of chronic lower back pain patients based on a mobile technology prototype. We address challenges of multi-sector collaboration and disruptive innovation.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.
Resumo:
Background Significant ongoing learning needs for nurses have occurred as a direct result of the continuous introduction of technological innovations and research developments in the healthcare environment. Despite an increased worldwide emphasis on the importance of continuing education, there continues to be an absence of empirical evidence of program and session effectiveness. Few studies determine whether continuing education enhances or develops practice and the relative cost benefits of health professionals’ participation in professional development. The implications for future clinical practice and associated educational approaches to meet the needs of an increasingly diverse multigenerational and multicultural workforce are also not well documented. There is minimal research confirming that continuing education programs contribute to improved patient outcomes, nurses’ earlier detection of patient deterioration or that standards of continuing competence are maintained. Crucially, evidence-based practice is demonstrated and international quality and safety benchmarks are adhered to. An integrated clinical learning model was developed to inform ongoing education for acute care nurses. Educational strategies included the use of integrated learning approaches, interactive teaching concepts and learner-centred pedagogies. A Respiratory Skills Update education (ReSKU) program was used as the content for the educational intervention to inform surgical nurses’ clinical practice in the area of respiratory assessment. The aim of the research was to evaluate the effectiveness of implementing the ReSKU program using teaching and learning strategies, in the context of organisational utility, on improving surgical nurses’ practice in the area of respiratory assessment. The education program aimed to facilitate better awareness, knowledge and understanding of respiratory dysfunction in the postoperative clinical environment. This research was guided by the work of Forneris (2004), who developed a theoretical framework to operationalise a critical thinking process incorporating the complexities of the clinical context. The framework used educational strategies that are learner-centred and participatory. These strategies aimed to engage the clinician in dynamic thinking processes in clinical practice situations guided by coaches and educators. Methods A quasi experimental pre test, post test non–equivalent control group design was used to evaluate the impact of the ReSKU program on the clinical practice of surgical nurses. The research tested the hypothesis that participation in the ReSKU program improves the reported beliefs and attitudes of surgical nurses, increases their knowledge and reported use of respiratory assessment skills. The study was conducted in a 400 bed regional referral public hospital, the central hub of three smaller hospitals, in a health district servicing the coastal and hinterland areas north of Brisbane. The sample included 90 nurses working in the three surgical wards eligible for inclusion in the study. The experimental group consisted of 36 surgical nurses who had chosen to attend the ReSKU program and consented to be part of the study intervention group. The comparison group included the 39 surgical nurses who elected not to attend the ReSKU program, but agreed to participate in the study. Findings One of the most notable findings was that nurses choosing not to participate were older, more experienced and less well educated. The data demonstrated that there was a barrier for training which impacted on educational strategies as this mature aged cohort was less likely to take up educational opportunities. The study demonstrated statistically significant differences between groups regarding reported use of respiratory skills, three months after ReSKU program attendance. Between group data analysis indicated that the intervention group’s reported beliefs and attitudes pertaining to subscale descriptors showed statistically significant differences in three of the six subscales following attendance at the ReSKU program. These subscales included influence on nursing care, educational preparation and clinical development. Findings suggest that the use of an integrated educational model underpinned by a robust theoretical framework is a strong factor in some perceptions of the ReSKU program relating to attitudes and behaviour. There were minimal differences in knowledge between groups across time. Conclusions This study was consistent with contemporary educational approaches using multi-modal, interactive teaching strategies and a robust overarching theoretical framework to support study concepts. The construct of critical thinking in the clinical context, combined with clinical reasoning and purposeful and collective reflection, was a powerful educational strategy to enhance competency and capability in clinicians.