974 resultados para Halides--Spectra.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early reports stated that Au was a catalyst of choice for the BOR because it would yield a near complete faradaic efficiency. However, it has recently been suggested that gold could yield to some extent the heterogeneous hydrolysis of BH(4)(-),therefore lowering the electron count per BH(4)(-), especially at low potential. Actually, the blur will exist regarding the BOR mechanism on Au as long as no physical proof regarding the reaction intermediates is not put forward. In that frame, in situ physical techniques like FTIR exhibit some interest to study the BOR. Consequently, in situ infrared reflectance spectroscopy measurements (SPAIRS technique) have been performed in 1 M NaOH/1 M NaBH(4) on a gold electrode with the aim to detect the intermediate species. We monitored several bands in B-H ((nu) over bar similar to 1180,1080 and 972 cm(-1)) and B-O bond regions ((nu) over bar =1325 and similar to 1425cm(-1)), which appear sequentially as a function of the electrode polarization. These absorption bands are assigned to BH(3), BH(2) and BO(2)(-) species. At the light of the experimental results, possible initial elementary steps of the BOR on gold electrode have been proposed and discussed according to the relevant literature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selenium detection limits of INAA are normally above its concentration in most biological materials. Gamma-gamma coincidence methodology can be used to improve the detection limits and uncertainties in the determination of selenium. Here, some edible parts of plants were measured using a HPGe detector equipped with a NaI(Tl) active shielding, producing spectra both in normal and coincidence modes. The results presented the reduction of the detection limits of selenium by a factor of 2 to 3 times and improvement in the uncertainty of up to 2 times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors` laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd. Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is focused on the role of formaldehyde in indoors Pb corrosion, that is still a controversial issue. Pb coupons were exposed to the atmosphere produced by formaldehyde aqueous solutions (1% and 4% in volume) and corrosion was followed by Raman Microscopy. The compounds formed in both experiments were the same, but were not in agreement with previously reported results in the literature, that identified plumbonacrite, hidrocerussite and Pb oxide. The experiments here reported have clearly shown that formates are produced on Pb surfaces exposed to formaldehyde and that oxidants, such as H(2)O(2), are not necessary. Formaldehyde oxidation also occurs with powdered PbO in a controlled environment. The Raman spectra of the Pb formates are much more complex than the Pb(HCO(2))(2) spectrum and change when exposed to room conditions, by a slow reaction with CO(2), forming Pb carbonates (hidrocerussite and plumbonacrite mostly) and Pb(HCO(2))(2). Such spectral change may be responsible for the differences in terms of chemical composition of the corrosion layer when the data here reported is compared with the literature. Other factors that must be considered are the storage conditions (particularly relative humidity and CO(2) concentration) and time; the effect of metal composition cannot be discarded as it is well known that the presence of other metals can change significantly the Pb resistance to oxidation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8 +/- 0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr2O3, with a reduction of more than 60% of the original mass. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthetic hydrous niobium oxide has been used for phosphate removal from the aqueous solutions. The kinetic data correspond very well to the pseudo second-order equation The phosphate removal tended. to increase with a decrease of pH. The equilibrium data describe very well the Langmuir isotherm. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The adsorption capacities are high, and increased with increasing temperature. The evaluated Delta G degrees and Delta H degrees indicate the spontaneous and endothermic nature of the reactions. The adsorptions occur with increase in entropy (Delta S positive) value suggest increase in randomness at the solid-liquid interface during the adsorption. A phosphate desorbability of approximately 60% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption kinetics of phosphate onto Nb(2)O(5)center dot nH(2)O was investigated at initial phosphate concentrations 10 and 50 mg L(-1). The kinetic process was described by a pseudo second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both Delta H and Delta S suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The effective desorption could be achieved using water at pH 12. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz.