938 resultados para HUMIDITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the climate warms, heat waves (HW) are projected to be more intense and to last longer, with serious implications for public health. Urban residents face higher health risks because urban heat islands (UHIs) exacerbate HW conditions. One strategy to mitigate negative impacts of urban thermal stress is the installation of green roofs (GRs) given their evaporative cooling effect. However, the effectiveness of GRs and the mechanisms by which they have an effect at the scale of entire cities are still largely unknown. The Greater Beijing Region (GBR) is modeled for a HW scenario with the Weather Research and Forecasting (WRF) model coupled with a state-of-the-art urban canopy model (PUCM) to examine the effectiveness of GRs. The results suggest GR would decrease near-surface air temperature (ΔT2max = 2.5 K) and wind speed (ΔUV10max = 1.0 m s-1) but increase atmospheric humidity (ΔQ2max = 1.3 g kg-1). GRs are simulated to lessen the overall thermal stress as indicated by apparent temperature (ΔAT2max = 1.7 °C). The modifications by GRs scale almost linearly with the fraction of the surface they cover. Investigation of the surface-atmosphere interactions indicate that GRs with plentiful soil moisture dissipate more of the surface energy as latent heat flux and subsequently inhibit the development of the daytime planetary boundary layer (PBL). This causes the atmospheric heating through entrainment at the PBL top to be decreased. Additionally, urban GRs modify regional circulation regimes leading to decreased advective heating under HW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community-acquired pneumonia (CAP) is a common cause of morbidity among children. Evidence on seasonality, especially on the frequency of viral and bacterial causative agents is scarce; such information may be useful in an era of changing climate conditions worldwide. To analyze the frequency of distinct infections, meteorological indicators and seasons in children hospitalized for CAP in Salvador, Brazil, nasopharyngeal aspirate and blood were collected from 184 patients aged < 5 y over a 21-month period. Fourteen microbes were investigated and 144 (78%) cases had the aetiology established. Significant differences were found in air temperature between spring and summer (p = 0.02) or winter (p < 0.001), summer and fall (p = 0.007) or winter (p < 0.001), fall and winter (p = 0.002), and on precipitation between spring and fall (p = 0.01). Correlations were found between: overall viral infections and relative humidity (p = 0.006; r = 0.6) or precipitation (p = 0.03; r = 0.5), parainfluenza and precipitation (p = 0.02; r = -0.5), respiratory syncytial virus (RSV) and air temperature (p = 0.048; r = -0.4) or precipitation (p = 0.045; r = 0.4), adenovirus and precipitation (p = 0.02; r = 0.5), pneumococcus and air temperature (p = 0.04; r = -0.4), and Chlamydia trachomatis and relative humidity (p = 0.02; r = -0.5). The frequency of parainfluenza infection was highest during spring (32.1%; p = 0.005) and that of RSV infection was highest in the fall (36.4%; p < 0.001). Correlations at regular strength were found between several microbes and meteorological indicators. Parainfluenza and RSV presented marked seasonal patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A second-order central composite design (2(2)) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 degrees C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH`s suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1069-1079,2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed at evaluating the thermal performance of a modular ceiling system for poultry houses. The reduced- and distorted-scale prototypes used ceiling modules made of reforested wood and were covered with recycled long-life package tiles. The following parameters were measured for 21 days: the internal surface temperature (ST), globe temperature and humidity index (WBGT), and radiant heat load (RHL). Measurements were made at times of highest heat load (11:00 am, 13:00 pm, and 03:00 pm). Collected data were analyzed by ""R"" statistics software. Means were compared by multiple comparison test (Tukey) and linear regression was performed, both at 5% significance level. The results showed that the prototype with the ceiling was more efficient to reduce internal tile surface temperature; however, this was not sufficient to provide a comfortable environment for broilers during the growout. Therefore, other techniques to provide proper cooling are required in addition to the ceiling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eddy-covariance measurements of net ecosystem exchange of CO(2) (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (R(E)) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall In the first (drier) year the annual NEE GEP and RE were lower than the sums in the second (normal) year and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year Although the net primary production (NPP) in the first year was 23% lower than that of the second year the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first dry year than in the second normal year The time variations in NEE were followed by NPP because in these young Eucalyptus plantations NEE is very largely dominated by NPP and heterotrophic respiration plays only a relatively minor role During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0 8 kPa Nighttime fluxes of CO(2) during calm conditions when the friction velocity (u) was below the threshold (0 25 ms(-1)) were estimated based on a Q(10) temperature-dependence relationship adjusted separately for different classes of soil moisture content which regulated the temperature sensitivity of ecosystem respiration (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Regional Climate Model (RegCM3) 10-year (1990-1999) simulation over southwestern South Atlantic Ocean (SAO) is evaluated to assess the mean climatology and the simulation errors of turbulent fluxes over the sea. Moreover, the relationship between these fluxes and the rainfall over some cyclogenetic areas is also analyzed. The RegCM3 results are validated using some reanalyses datasets (ERA40, R2, GPCP and WHOI). The summer and winter spatial patterns of latent and sensible heat fluxes simulated by the RegCM3 are in agreement with the reanalyses (WHOI, R2 and ERA40). They show large latent heat fluxes exchange in the subtropical SAO and at higher latitudes in the warm waters of Brazil Current. In particular, the magnitude of RegCM3 latent heat fluxes is similar to the WHOI, which is probably related to two factors: (a) small specific humidity bias, and (b) the RegCM3 flux algorithm. In contrast, the RegCM3 presents large overestimation of sensible heat flux, though it simulates well their spatial pattern. This simulation error is associated with the RegCM3 underestimation of the 2-m air temperature. In southwestern SAO, in three known cyclogenetic areas, the reanalyses and the RegCM3 show the existence of different physical mechanisms that control the annual cycles of latent/sensible heating and rainfall. It is shown that over the eastern coast of Uruguay (35A degrees-43A degrees S) and the southeastern coast of Argentina (44A degrees-52A degrees S) the sea-air moisture and heat exchange play an important role to control the annual cycle of precipitation. This does not happen on the south/southeastern coast of Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] This work examines the main sources of moisture over Central Brazil and La Plata Basin during the year through a new Lagrangian diagnosis method which identifies the humidity contributions to the moisture budget over a region. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along back-trajectories for the previous 10 d. The origin of all air masses residing over each region was tracked during a period of 5 years (2000-2004). These regions were selected because they coincide with two centers of action of a known dipole precipitation variability mode observed in different temporal scales (from intra seasonal up to inter decadal timescales) and are related to the climatic variability of the South American Monsoon System. The results suggested the importance of the tropical south Atlantic as a moisture source for Central Brazil, and of recycling for La Plata basin. It seems that the Tropical South Atlantic plays an important role as a moisture source for Central Brazil and La Plata basin along the year, particularly during the austral summer. The north Atlantic is also an additional source for both regions during the austral summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines moisture transport on intraseasonal timescales over the continent and over the South Atlantic convergence zone (SACZ) during the South America (SA) summer monsoon. Combined Empirical Orthogonal Function analysis (EOFc) of Global Precipitation Climatology Project pentad precipitation, specific humidity, air temperature, zonal and meridional winds at 850 hPa (NCEP/NCAR reanalysis) are performed to identify the large-scale variability of the South America monsoon system and the SACZ. The first EOFc was used as a large-scale index for the South American monsoon (LISAM), whereas the second EOFc characterized the SACZ. LISAM (SACZ) index showed spectral variance on 30-90 (15-20) days and were both band filtered (10-100 days). Intraseasonal wet anomalies were defined when LISAM and SACZ anomalies were above the 75th percentile of their respective distribution. LISAM and SACZ wet events were examined independently of each other and when they occur simultaneously. LISAM wet events were observed with the amplification of wave activity in the Northern Hemisphere and the enhancement of northwesterly cross-equatorial moisture transport over tropical continental SA. Enhanced SACZ was observed with moisture transport from the extratropics of the Southern Hemisphere. Simultaneous LISAM and SACZ wet events are associated with cross-equatorial moisture transport along with moisture transport from Subtropical Southwestern Atlantic.