987 resultados para HUMAN PERIODONTAL-DISEASE
Resumo:
Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.
Resumo:
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Resumo:
OBJECTIVES The association between periodontal disease and adverse pregnancy outcomes (APO), primarily preterm birth (PTB), is still controversially discussed in the literature. Therefore, the aim of the present systematic review was to analyze the existing literature on the potential association between inflammatory mediators detected in gingival crevicular fluid (GCF) and APO. MATERIALS AND METHODS MEDLINE (PubMed) and EMBASE databases were searched for entries up to April 2012 and studies were selected by two independent reviewers. RESULTS The majority of the eight studies included confirmed a positive association between GCF mediators, such as interleukin-1β, prostaglandin E2, and tumor necrosis factor-alpha, and APO. Due to the heterogeneity and variability of the available studies, no meta-analysis could be performed. CONCLUSIONS A positive association between GCF inflammatory mediator levels and APO/PTB might be present but the results need to be considered with great caution because of the heterogeneity and variability among the studies. Further studies with an adequate number of patients allowing for an appropriate analysis are warranted to definitely confirm this association. CLINICAL RELEVANCE The present findings suggest that an association between GCF inflammatory mediator levels and APO might exist.
Resumo:
OBJECTIVES The paper's aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. MATERIALS AND METHODS Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). RESULTS The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. CONCLUSIONS The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. CLINICAL RELEVANCE Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients' pain and expectations and prevent further dentin exposure with subsequent sensitivity.
VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
Resumo:
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.
Resumo:
Hepatitis E is considered an emerging human viral disease in industrialized countries. Studies from Switzerland report a human seroprevalence of hepatitis E virus (HEV) of 2.6-21%, a range lower than in adjacent European countries. The aim of this study was to determine whether HEV seroprevalence in domestic pigs and wild boars is also lower in Switzerland and whether it is increasing and thus indicating that this zoonotic viral infection is emerging. Serum samples collected from 2,001 pigs in 2006 and 2011 and from 303 wild boars from 2008 to 2012 were analysed by ELISA for the presence of HEV-specific antibodies. Overall HEV seroprevalence was 58.1% in domestic pigs and 12.5% in wild boars. Prevalence in domestic pigs was significantly higher in 2006 than in 2011. In conclusion, HEV seroprevalence in domestic pigs and wild boars in Switzerland is comparable with the seroprevalence in other countries and not increasing. Therefore, prevalence of HEV in humans must be related to other factors than prevalence in pigs or wild boars.
Resumo:
Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.
Resumo:
OBJECTIVE To determine the microbiota at implants and adjacent teeth 10 years after placement of implants with a sandblasted and acid-etched surface. MATERIAL AND METHODS Plaque samples obtained from the deepest sites of 504 implants and of 493 adjacent teeth were analyzed for certain bacterial species associated with periodontitis, for staphylococci, for aerobic gram-negative rods, and for yeasts using nucleic acid-based methods. RESULTS Species known to be associated with periodontitis were detectable at 6.2-78.4% of the implants. Significantly higher counts at implants in comparison with teeth were assessed for Tannerella forsythia, Parvimonas micra, Fusobacterium nucleatum/necrophorum, and Campylobacter rectus. Higher counts of periodontopathogenic species were detectable at implants of current smokers than at those of non-smokers. In addition, those species were found in higher quantities at implants of subjects with periodontitis. The prevalence of Prevotella intermedia, Treponema denticola, C. rectus, and moreover of Staphylococcus warneri might be associated with peri-implant inflammation. Selected staphylococcal species (not Staphylococcus aureus), aerobic gram-negative rods, and yeasts were frequently detected, but with the exception of S. warneri, they did not show any association with periodontal or peri-implant diseases. CONCLUSIONS Smoking and periodontal disease are risk factors for colonization of periodontopathic bacteria at implants. Those bacterial species may play a potential role in peri-implant inflammation. The role of S. warneri needs further validation.
Resumo:
Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.
Resumo:
This project involved developing a model for planning a dental emergency treatment center that could function as an embedded component of a shelter for the homeless population. The dental services provided by such a clinic should include treatment for tooth pain, dental caries or cavities, chipped or broken teeth, broken partials, abscessed teeth, emergency cleanings, periodontal disease or gum disease and fillings. These are the dental services that are most often sought by homeless people in hospital emergency rooms.^ The underlying assumption for this project was that the oral health needs of the homeless community can most effectively be addressed by implementing small dental clinics in existing facilities that provide shelter and other services for this population. The model described in this project identifies oral health care services that would be provided by the clinic, facility (physical plant) requirements and associated infrastructure to operate an embedded dental clinic, methods for obtaining funding, strategies of recruiting dental professionals to staff the facility, and methods to assess the outcomes of the embedded clinic strategy. As an example, this project describes a strategy for developing such an embedded clinic at San Antonio Metropolitan Ministries SAMM shelter based on recommendations from community health care leaders, managers of homeless shelters, members of the homeless community and dental professionals^
Resumo:
Dengue fever is a strictly human and non-human primate disease characterized by a high fever, thrombocytopenia, retro-orbital pain, and severe joint and muscle pain. Over 40% of the world population is at risk. Recent re-emergence of dengue outbreaks in Texas and Florida following the re-introduction of competent Aedes mosquito vectors in the United States have raised growing concerns about the potential for increased occurrences of dengue fever outbreaks throughout the southern United States. Current deficiencies in vector control, active surveillance and awareness among medical practitioners may contribute to a delay in recognizing and controlling a dengue virus outbreak. Previous studies have shown links between low-income census tracts, high population density, and dengue fever within the United States. Areas of low-income and high population density that correlate with the distribution of Aedes mosquitoes result in higher potential for outbreaks. In this retrospective ecologic study, nine maps were generated to model U.S. census tracts’ potential to sustain dengue virus transmission if the virus was introduced into the area. Variables in the model included presence of a competent vector in the county and census tract percent poverty and population density. Thirty states, 1,188 counties, and 34,705 census tracts were included in the analysis. Among counties with Aedes mosquito infestation, the census tracts were ranked high, medium, and low risk potential for sustained transmission of the virus. High risk census tracts were identified as areas having the vector, ≥20% poverty, and ≥500 persons per square mile. Census tracts with either ≥20% poverty or ≥500 persons per square mile and have the vector present are considered moderate risk. Census tracts that have the vector present but have <20% poverty and <500 persons per square mile are considered low risk. Furthermore, counties were characterized as moderate risk if 50% or more of the census tracts in that county were rated high or moderate risk, and high risk if 25% or greater were rated high risk. Extreme risk counties, which were primarily concentrated in Texas and Mississippi, were considered having 50% or greater of the census tracts ranked as high risk. Mapping of geographic areas with potential to sustain dengue virus transmission will support surveillance efforts and assist medical personnel in recognizing potential cases. ^
Resumo:
Persistent infection with hepatitis B virus (HBV) is a leading cause of human liver disease and is strongly associated with hepatocellular carcinoma, one of the most prevalent forms of human cancer. Apoptosis (programmed cell death) is an important mediator of chronic liver disease caused by HBV infection. It is demonstrated that the HBV HBx protein acutely sensitizes cells to apoptotic killing when expressed during viral replication in cultured cells and in transfected cells independently of other HBV genes. Cells that were resistant to apoptotic killing by high doses of tumor necrosis factor α (TNFα), a cytokine associated with liver damage during HBV infection, were made sensitive to very low doses of TNFα by HBx. HBx induced apoptosis by prolonged stimulation of N-Myc and the stress-mediated mitogen-activated-protein kinase kinase 1 (MEKK1) pathway but not by up-regulating TNF receptors. Cell killing was blocked by inhibiting HBx stimulation of N-Myc or mitogen-activated-protein kinase kinase 1 using dominant-interfering forms or by retargeting HBx from the cytoplasm to the nucleus, which prevents HBx activation of cytoplasmic signal transduction cascades. Treatment of cells with a mitogenic growth factor produced by many virus-induced tumors impaired induction of apoptosis by HBx and TNFα. These results indicate that HBx might be involved in HBV pathogenesis (liver disease) during virus infection and that enhanced apoptotic killing by HBx and TNFα might select for neoplastic hepatocytes that survive by synthesizing mitogenic growth factors.
Resumo:
Enterotoxigenic Escherichia coli associated with human diarrheal disease utilize any of a limited group of serologically distinguishable pili for attachment to intestinal cells. These include CS1 and CFA/I pili. We show here that chemical modification of arginyl residues in CS1 pili abolishes CS1-mediated agglutination of bovine erythrocytes, which serves as a model system for attachment. Alanine substitution of the single arginyl residue in CooA, the major pilin, had no effect on the assembly of pili or on hemagglutination. In contrast, substitution of alanine for R181 in CooD, the minor pilin associated with the pilus tip, abolished hemagglutination, and substitution of R20 reduced hemagglutination. Neither of these substitutions affected CS1 pilus assembly. This shows that CooD is essential for CS1-mediated attachment and identifies specific residues that are involved in receptor binding but not in pilus assembly. In addition to mediating agglutination of bovine erythrocytes, CFA/I also mediates agglutination of human erythrocytes. Substitution of R181 by alanine in the CooD homolog, CfaE, abolished both of these reactions. We conclude that the same region of the pilus tip protein is involved in adherence of CS1 and CFA/I pili, although their receptor specificities differ. This suggests that the region of the pilus tip adhesin protein that includes R181 might be an appropriate target for therapeutic intervention or for a vaccine to protect against human diarrhea caused by enterotoxigenic E. coli strains that have serologically different pili.
Resumo:
Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable β-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key β-barrel common to the eukaryotic CuZnSODs. However, the β-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key β-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance.
Resumo:
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease.