978 resultados para Greenhouse conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a building integrated photovoltaic system (BIPV) has to be commendable, not only on the electrical front but also on the thermal comfort front, thereby fulfilling the true responsibility of an energy providing shelter. Given the low thermal mass of BIPV systems, unintended and undesired outcomes of harnessing solar energy - such as heat gain into the building, especially in tropical regions - have to be adequately addressed. Cell (module) temperature is one critical factor that affects both the electrical and the thermal performance of such installations. The current paper discusses the impact of cell (module) temperature on both the electrical efficiency and thermal comfort by investigating the holistic performance of one such system (5.25 kW(p)) installed at the Centre for Sustainable Technologies in the Indian Institute of Science, Bangalore. Some recommendations (passive techniques) for improving the performance and making BIPV structures thermally comfortable have been listed out. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong atmospheric turbulence is a major hindrance in wireless optical communication systems. In this paper, the performance of a wireless optical communication system is analyzed using different modulation formats such as, binary phase shift keying-subcarrier intensity modulation (BPSK-SIM), differential phase shift keying (DPSK), differential phase shift keying-subcarrier intensity modulation (DPSK-SIM), Mary pulse position modulation (M-PPM) and polarization shift keying (PoISK). The atmospheric channel is modeled for strong atmospheric turbulences with combined effect of turbulence and pointing errors. Novel closed-form analytical expressions for average bit error rate (BER), channel capacity and outage probability for the various modulation techniques, viz. BPSK-SIM, DPSK, DPSK-SIM, PoISK and M-PPM are derived. The simulated results for BER, channel capacity and outage probability of various modulation techniques are plotted and analyzed. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new C-0 composite plate finite element based on Reddy's third order theory is used for large deformation dynamic analysis of delaminated composite plates. The inter-laminar contact is modeled with an augmented Lagrangian approach. Numerical results show that the widely used ``unconditionally stable'' beta-Newmark method presents instability problems in the transient simulation of delaminated composite plate structures with large deformation. To overcome this instability issue, an energy and momentum conserving composite implicit time integration scheme presented by Bathe and Baig is used. It is found that a proper selection of the penalty parameter is very crucial in the contact simulation. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation behavior of the magnesium alloy WE43 (Mg-4%Y-2.3%Nd-0.5%Zr) has been studied in strained and unstrained conditions using Transmission Electron Microscopy (TEM). Ageing treatments were carried out at three temperatures, namely 210 degrees C, 230 degrees C and 260 degrees C. The precipitation sequence during static aging of solution treated (ST) samples has been identified as ST —> beta'' —> beta' followed by the formation of beta(1) and equilibrium beta precipitates form after very long ageing periods. Dynamic precipitation was observed during high temperature deformation, leading to the formation of beta' and intermediate beta(1) precipitates. The strained samples, when further heat treated, resulted in the transformation of beta(1) into beta equilibrium precipitates. The sequence of dynamic precipitation is ST —> beta(1) —> beta and ST —> beta'. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of two major electrodeposition process conditions, electrolyte bath temperature and current density, on the microstructure and crystallographic texture of pure tin coatings on brass and, ultimately, on the extent of whisker formation have been examined. The grain size of the deposited coatings increased with increasing electrolyte bath temperature and current density, which significantly affected the dominant texture: (211) or (420) was the dominant texture at low current densities whereas, depending on deposition temperature, (200) or (220) became the dominant texture at high current densities. After deposition, coatings were subjected to different environmental conditions, for example isothermal aging (room temperature, 50A degrees C, or 150A degrees C) for up to 90 days and thermal cycling between -25A degrees C and 85A degrees C for 100 cycles, and whisker growth was studied. The Sn coatings with low Miller index planes, for example (200) and (220), and with moderate aging temperature were more prone to whiskering than coating with high Miller index planes, for example (420), and high aging temperature. A processing route involving the optimum combination of current density and deposition temperature is proposed for suppressing whisker growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers a semi-infinite mathematical programming problem with equilibrium constraints (SIMPEC) defined as a semi-infinite mathematical programming problem with complementarity constraints. We establish necessary and sufficient optimality conditions for the (SIMPEC). We also formulate Wolfe- and Mond-Weir-type dual models for (SIMPEC) and establish weak, strong and strict converse duality theorems for (SIMPEC) and the corresponding dual problems under invexity assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.