937 resultados para Grass pollen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-year-old female Lucerne Hound was presented with a one-week history of signs of progressive neck pain, inappetence, apathy, and an elevated rectal temperature. Findings of magnetic resonance imaging (MRI) were consistent with a foreign body abscess in the epidural space at the level of the first and second cervical vertebrae. A left-sided dorso-lateral atlantoaxial approach was performed, revealing an epidural abscess containing a grass awn. The clinical signs resolved within three days of surgery and the dog made a full recovery. This case report shows that grass awns can migrate to the atlantoaxial region in dogs and MRI findings lead to a suspicion of caudo-cranial migration within the spinal canal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Fahrt von Zernez in die Val Müstair erinnert an die Wälder der Rocky Mountains. Es gibt in der Schweiz keinen zweiten Ort mit diesem Erscheinungsbild. Ausgedehnte Bestände der Aufrechten Bergföhre Pinus mugo uncinata, trockene und schroffe Hänge prägen das Landschaftsbild, welches an Nordamerika denken lässt, wo Feuer natürlicher Bestandteil der Waldökosysteme ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents new paleoenvironmental data obtained from sedimentary cores from Lago Fagnano, an elon- gated lake located at 54°S in southernmost South America. Data from palynomorphs (pollen, spores and algae) and associated palynofacies as well as from diatom taxa retrieved from these cores compared with other regional proxies contribute to evaluate the similarities and differences in the climate patterns based on different proxies from southernmost Patagonia. The pollen analysis reveals that a grass steppe environment existed during the early Holocene (11,300–~8000 cal a BP) followed by a major vegetation change characterized by development of forest-steppe ecotone communities between ~8000 and ~6500 cal a BP, under more humid conditions. Between ~ 6500 and ~ 4000 cal a BP, expansion and colonization by Nothofagus forests reflect an increase in effec- tive moisture levels, while openness in the forest communities characterizes the region after ~ 1100 cal a BP. The palynological organic matter combined with the algal content reflects hydrological changes occurring in the lake and its nutrient status, probably in close relation with past climate oscillations. All these past ecological changes are closely related to oscillations in precipitation and temperature as a response to the variations in the latitudinal position and/or strength of the Southern Westerlies wind belt during the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orb-weaving spiders (Araneidae) are commonly regarded as generalist insect predators but resources provided by plants such as pollen may be an important dietary supplementation. Their webs snare insect prey, but can also trap aerial plankton like pollen and fungal spores. When recycling their orb webs, the spiders may therefore also feed on adhering pollen grains or fungal spores via extraoral digestion. In this study we measured stable isotope ratios in the bodies of two araneid species (Aculepeira ceropegia and Araneus diadematus), their potential prey and pollen to determine the relative contribution of pollen to their diet. We found that about 25% of juvenile orb-weaving spiders’ diet consisted of pollen, the other 75% of flying insects, mainly small dipterans and hymenopterans. The pollen grains in our study were too large to be taken up accidentally by the spiders and had first to be digested extraorally by enzymes in an active act of consumption. Therefore, pollen can be seen as a substantial component of the spiders’ diet. This finding suggests that these spiders need to be classified as omnivores rather than pure carnivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al ., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of C-14-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen-trap results from the Swiss Alps 1996–2009 were used to assess the pollen dispersal–deposition properties of Poaceae (grasses) and Cyperaceae (sedges). Dispersal parameter values were investigated for a modified version of the Prentice–Sugita pollen dispersal–deposition model. Appropriate values (i.e. realistic in the field and allowing realistic modelling results) for wind speed are suggested to be in the range of 3–7 m s− 1 and for pollen an injection height of 0.03–0.1 m above the ground. The appropriate range of pollen injection height values for grasses and sedges differs from that of trees in the same area, suggesting different pollen dispersal properties between herbs and trees. In addition, logarithmic weighting of the vegetation was tested as an alternative to the modified Prentice–Sugita model. This yielded very similar results, suggesting that the use of such much simpler approximations of the pollen–vegetation relationship is a plausible alternative. Based on the modified Prentice–Sugita model, absolute pollen productivity for Poaceae was estimated to 7300 ± 400 grains cm− 2 year− 1 (1 SE). The data basis for Cyperaceae is smaller than for Poaceae, but the dispersal parameter values determined as appropriate for Poaceae yield good results. Absolute pollen productivity for Cyperaceae was estimated to 6300 ± 1100 grains cm− 2 year− 1 (1 SE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reconstruct the vegetation history of the Upper Engadine, continuous sediment cores covering the past 11 800 years from Lej da Champfer and Lej da San Murezzan (Upper Engadine Valley, c. 1800 m a.s.l., southeastern Switzerland) have been analysed for pollen and plant macrofossils. The chronologies of the cores are based on 16 and 22 radiocarbon dates, respectively. The palaeobotanical records of both lakes are in agreement for the Holocene, but remarkable differences exist between the sites during the period 11 100 to 10 500 cal. BP, when Lej da Champfer was affected by re-sedimentation processes. Macrofossil data suggest that Holocene afforestation began at around 11400 cal. BP. A climatic deterioration, the Preboreal Oscillation, stopped and subsequently delayed the establishment of trees until c. 11000 cal. BP, when first Betula, then Pinus sylvestrislmugo, then Larix 300 years later, and finally Pinus cembra expanded within the lake catchment. Treeline was at c. 1500 m during the Younger Dryas (12 542- 11 550 cal. BP) in the Central Alps. Our results, along with other macrofossil studies from the Alps, suggest a nearly simultaneous afforestation (e.g., by Pinus sylvestris in the lower subalpine belt) between 1500 and 2340 m a.s.l. at around 11 400 to 11 300 cal. BP. We suggest that forest-limit species (e.g., Pinus cembra, Larix decidua) could expand faster at today's treeline (c. 2350 m a.s.l.), than 550 m lower. Earlier expansions at higher altitudes probably resulted from reduced competition with low-altitude trees (e.g. Pinus sylvestris) and herbaceous species. Comparison with other proxies such as oxygen isotopes, residual A14C, glacier fluctuations, and alpine climatic cooling phases suggests climatic sensitivity of vegetation during the early Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The aim of this study is to explore the migration (colonization of new areas) and subsequent population expansion (within an area) since 15 ka cal BP of Abies, Fagus, Picea, and Quercus into and through the Alps solely on the basis of high-quality pollen data. Methods: Chronologies of 101 pollen sequences are improved or created. Data from the area delimited by 45.5–48.1°N and 6–14°E are summarized in three ways: (1) in a selection of pollen-percentage threshold maps (thresholds 0.5%, 1%, 2%, 4%, 8%, 16%, and 32% of land pollen); (2) in graphic summaries of 250-year time slices and geographic segments (lengthwise and transverse in relation to the main axis of the Alps) as pollen-percentage curves, pollen-percentage difference curves, and pollen-percentage threshold ages cal BP graphed against both the length and the transverse Alpine axes; and (3) in tables showing statistical relationships of either pollen-percentage threshold ages cal BP or pollen expansion durations (=time lapse between different pollen-percentage threshold ages cal BP) with latitude, longitude, and elevation; to establish these relationships we used both simple linear regression and multiple linear regression after stepwise-forward selection. Results: The statistical results indicate that (a) the use of pollen-percentage thresholds between 0.5% and 8% yield mostly similar directions of tree migration, so the method is fairly robust, (b) Abies migrated northward, Fagus southward, Picea westward, and Quercus northward; more detail does not emerge due to an extreme scarcity of high-quality data especially along the southern foothills of the Alps and in the eastern Alps. This scarcity allows the reconstruction of one immigration route only of Abies into the southern Alps. The speed of population expansion (following arrival) of Abies increased and of Picea decreased during the Holocene, of Fagus it decreased especially during the later Holocene, and of Quercus it increased especially at the start of the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climatic relationships were established in two 210Pb dated pollen sequences from small mires closely surrounded by forest just below actual forest limits (but about 300 m below potential climatic forest limits) in the northern Swiss Alps (suboceanic in climate; mainly with Picea) and the central Swiss Alps (subcontinental; mainly Pinus cembra and Larix) at annual or near-annual resolution from ad 1901 to 1996. Effects of vegetational succession were removed by splitting the time series into early and late periods and by linear detrending. Both pollen concentrations detrended by the depth-age model and modified percentages (in which counts of dominant pollen types are down-weighted) are correlated by simple linear regression with smoothed climatic parameters with one-and two-year timelags, including average monthly and April/September daylight air temperatures and with seasonal and annual precipitation sums. Results from detrended pollen concentrations suggest that peat accumulation is favoured in the northern-Alpine mire either by early snowmelt or by summer precipitation, but in the central-Alpine mire by increased precipitation and cooler summers, suggesting a position of the northern-Alpine mire near the upper altitudinal limit of peat formation, but of the central-Alpine mire near the lower limit. Results from modified pollen percentages indicate that pollen pro duction by plants growing near their upper altitudinal limit is limited by insufficient warmth in summer, and pollen production by plants growing near their lower altitudinal limit is limited by too-high temperatures. Only weakly significant pollen/climate relationships were found for Pinus cembra and Larix, probably because they experience little climatic stress growing 300 m below the potential climatic forest limit.