867 resultados para Graph-based method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modified UNIFAC–VISCO group contribution method was developed for the correlation and prediction of viscosity of ionic liquids as a function of temperature at 0.1 MPa. In this original approach, cations and anions were regarded as peculiar molecular groups. The significance of this approach comes from the ability to calculate the viscosity of mixtures of ionic liquids as well as pure ionic liquids. Binary interaction parameters for selected cations and anions were determined by fitting the experimental viscosity data available in literature for selected ionic liquids. The temperature dependence on the viscosity of the cations and anions were fitted to a Vogel–Fulcher–Tamman behavior. Binary interaction parameters and VFT type fitting parameters were then used to determine the viscosity of pure and mixtures of ionic liquids with different combinations of cations and anions to ensure the validity of the prediction method. Consequently, the viscosities of binary ionic liquid mixtures were then calculated by using this prediction method. In this work, the viscosity data of pure ionic liquids and of binary mixtures of ionic liquids are successfully calculated from 293.15 K to 363.15 K at 0.1 MPa. All calculated viscosity data showed excellent agreement with experimental data with a relative absolute average deviation lower than 1.7%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The viscosity of ionic liquids (ILs) has been modeled as a function of temperature and at atmospheric pressure using a new method based on the UNIFAC–VISCO method. This model extends the calculations previously reported by our group (see Zhao et al. J. Chem. Eng. Data 2016, 61, 2160–2169) which used 154 experimental viscosity data points of 25 ionic liquids for regression of a set of binary interaction parameters and ion Vogel–Fulcher–Tammann (VFT) parameters. Discrepancies in the experimental data of the same IL affect the quality of the correlation and thus the development of the predictive method. In this work, mathematical gnostics was used to analyze the experimental data from different sources and recommend one set of reliable data for each IL. These recommended data (totally 819 data points) for 70 ILs were correlated using this model to obtain an extended set of binary interaction parameters and ion VFT parameters, with a regression accuracy of 1.4%. In addition, 966 experimental viscosity data points for 11 binary mixtures of ILs were collected from literature to establish this model. All the binary data consist of 128 training data points used for the optimization of binary interaction parameters and 838 test data points used for the comparison of the pure evaluated values. The relative average absolute deviation (RAAD) for training and test is 2.9% and 3.9%, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Software protection is an essential aspect of information security to withstand malicious activities on software, and preserving software assets. However, software developers still lacks a methodology for the assessment of the deployed protections. To solve these issues, we present a novel attack simulation based software protection assessment method to assess and compare various protection solutions. Our solution relies on Petri Nets to specify and visualize attack models, and we developed a Monte Carlo based approach to simulate attacking processes and to deal with uncertainty. Then, based on this simulation and estimation, a novel protection comparison model is proposed to compare different protection solutions. Lastly, our attack simulation based software protection assessment method is presented. We illustrate our method by means of a software protection assessment process to demonstrate that our approach can provide a suitable software protection assessment for developers and software companies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract not available

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is the group of techniques that use antibodies as specific reagents to identify and demonstrate several cell and tissue components that are antigens. This linking allows locating and identifying the in situ presence of various substances by means of color that is associated with the formed antigen-antibody complexes. The practical value of this biotechnology area, widely used in Pathology and Oncology, in diagnostic, prognostic, theranostic and research context, results from the possibility of combining a colour marker with an antibody without causing any damage to specific binding established between antibody and antigen. This provides the microscopic observation of the target locations where the antibody and hence the antigen are present. IHC is presented as a powerful means for identification of several cellular and tissue structures that can be associated with pathologies, and of the consequences, at functional and morphological level, of these same elements action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality) frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease), and the main cells in each community. We analyze our approach in two cases: TGF-β and the Alzheimer Disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.