928 resultados para Gradient artérioveineux
Resumo:
The construction of large?volume methacrylate monolithic columns for preparative-scale plasmid purification is obstructed by the enormous release of exotherms, thus introducing structural heterogeneity in the monolith pore system. A remarkable radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for the preparation of a structurally homogeneous monolith. A novel heat expulsion technique is employed to overcome the heat build-up during the synthesis process. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerisation in a gradual addition fashion. Characteristics of a 50 mL monolith synthesized using this technique showed an improved uniformity in the pore structure radially along the length on the monolith. Chromatographic characterization of this adsorbent displayed a persistent binding capacity of 14.5 mg pDNA/mL of the adsorbent. The adsorbent was able to fractionate a clarified bacteria lysate in only 3 min (after loading) into RNA, protein and pDNA respectively. The pDNA fraction obtained was analyzed to be a homogeneous supercoiled pDNA.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
Pedestrian crashes are one of the major road safety problems in developing countries representing about 40% of total fatal crashes in low income countries. Despite the fact that many pedestrian crashes in these countries occur at unsignalized intersections such as roundabouts, studies focussing on this issue are limited—thus representing a critical research gap. The objective of this study is to develop safety performance functions for pedestrian crashes at modern roundabouts to identify significant roadway geometric, traffic and land use characteristics related to pedestrian safety. To establish the relationship between pedestrian crashes and various causal factors, detailed data including various forms of exposure, geometric and traffic characteristics, and spatial factors such as proximity to schools and proximity to drinking establishments were collected from a sample of 22 modern roundabouts in Addis Ababa, Ethiopia, representing about 56% of such roundabouts in Addis Ababa. To account for spatial correlation resulting from multiple observations at a roundabout, both the random effect Poisson (REP) and random effect Negative Binomial (RENB) regression models were estimated and compared. Model goodness of fit statistics reveal a marginally superior fit of the REP model compared to the RENB model of pedestrian crashes at roundabouts. Pedestrian crossing volume and the product of traffic volumes along major and minor road had significant and positive associations with pedestrian crashes at roundabouts. The presence of a public transport (bus/taxi) terminal beside a roundabout is associated with increased pedestrian crashes. While the maximum gradient of an approach road is negatively associated with pedestrian safety, the provision of a raised median along an approach appears to increase pedestrian safety at roundabouts. Remedial measures are identified for combating pedestrian safety problems at roundabouts in the context of a developing country.
Resumo:
The Bruneau-Jarbidge eruptive center (BJEC) in the central Snake River Plain, Idaho, USA consists of the Cougar Point Tuff (CPT), a series of ten, high-temperature (900-1000°C) voluminous ignimbrites produced over the explosive phase of volcanism (12.8-10.5 Ma) and more than a dozen equally high-temperature rhyolite lava flows produced during the effusive phase (10.5-8 Ma). Spot analyses by ion microprobe of oxygen isotope ratios in 210 zircons demonstrate that all of the eruptive units of the BJEC are characterized by zircon δ¹⁸O values ≤ 2.5‰, thus documenting the largest low δ¹⁸O silicic volcanic province known on Earth (>10⁴ km³). There is no evidence for voluminous normal δ¹⁸O magmatism at the BJEC that precedes generation of low δ¹⁸O magmas as there is at other volcanic centers that generate low δ¹⁸O magmas such as Heise and Yellowstone. At these younger volcanic centers of the hotspot track, such low δ¹⁸O magmas represent ~45 % and ~20% respectively of total eruptive volumes. Zircons in all BJEC tuffs and lavas studied (23 units) document strong δ¹⁸O depletion (median CPT δ¹⁸OZrc = 1.0‰, post-CPT lavas = 1.5‰) with the third member of the CPT recording an excursion to minimum δ¹⁸O values (δ¹⁸OZrc= -1.8‰) in a supereruption > 2‰ lower than other voluminous low δ¹⁸O rhyolites known worldwide (δ¹⁸OWR ≤0.9 vs. 3.4‰). Subsequent units of the CPT and lavas record a progressive recovery in δ¹⁸OZrc to ~2.5‰ over a ~ 4 m.y. interval (12 to 8 Ma). We present detailed evidence of unit-to-unit systematic patterns in O isotopic zoning in zircons (i.e. direction and magnitude of Δcore-rim), spectrum of δ¹⁸O in individual units, and zircon inheritance patterns established by re-analysis of spots for U-Th-Pb isotopes by LA-ICPMS and SHRIMP. In conjunction with mineral thermometry and magma compositions, these patterns are difficult to reconcile with the well-established model for "cannibalistic" low δ¹⁸O magma genesis at Heise and Yellowstone. We present an alternative model for the central Snake River Plain using the modeling results of Leeman et al. (2008) for ¹⁸O depletion as a function of depth in a mid-upper crustal protolith that was hydrothermally altered by infiltrating meteoric waters prior to the onset of silicic magmatism. The model proposes that BJEC silicic magmas were generated in response to the propagation of a melting front, driven by the incremental growth of a vast underlying mafic sill complex, over a ~5 m.y. interval through a crustal volume in which a vertically asymmetric δ¹⁸OWR gradient had previously developed that was sharply inflected from ~ -1 to 10‰ at mid-upper crustal depths. Within the context of the model, data from BJEC zircons are consistent with incremental melting and mixing events in roof zones of magma reservoirs that accompany surfaceward advance of the coupled mafic-silicic magmatic system.
Resumo:
The NTRK1 gene (also known as TRKA) encodes a high-affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importantce of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower fractional anisotropy in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy-acommondiffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test reproducibility of results. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple-comparisons corrected: false discovery rate critical p=0.038 forNTRK1-Tand0.013 for rs4661063-A). In each half-sample, theNTRK1-T effectwasreplicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure.
Resumo:
The NTRK3 gene (also known as TRKC) encodes a high affinity receptor for the neurotrophin 3'-nucleotidase (NT3), which is implicated in oligodendrocyte and myelin development. We previously found that white matter integrity in young adults is related to common variants in genes encoding neurotrophins and their receptors. This underscores the importance of neurotrophins for white matter development. NTRK3 variants are putative risk factors for schizophrenia, bipolar disorder, and obsessive-compulsive disorder hoarding, suggesting that some NTRK3 variants may affect the brain.To test this, we scanned 392 healthy adult twins and their siblings (mean age, 23.6. ±. 2.2. years; range: 20-29. years) with 105-gradient 4-Tesla diffusion tensor imaging (DTI). We identified 18 single nucleotide polymorphisms (SNPs) in the NTRK3 gene that have been associated with neuropsychiatric disorders. We used a multi-SNP model, adjusting for family relatedness, age, and sex, to relate these variants to voxelwise fractional anisotropy (FA) - a DTI measure of white matter integrity.FA was optimally predicted (based on the highest false discovery rate critical p), by five SNPs (rs1017412, rs2114252, rs16941261, rs3784406, and rs7176429; overall FDR critical p=. 0.028). Gene effects were widespread and included the corpus callosum genu and inferior longitudinal fasciculus - regions implicated in several neuropsychiatric disorders and previously associated with other neurotrophin-related genetic variants in an overlapping sample of subjects. NTRK3 genetic variants, and neurotrophins more generally, may influence white matter integrity in brain regions implicated in neuropsychiatric disorders.
Resumo:
Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.
Resumo:
Graph theory can be applied to matrices that represent the brain's anatomical connections, to better understand global properties of anatomical networks, such as their clustering, efficiency and "small-world" topology. Network analysis is popular in adult studies of connectivity, but only one study - in just 30 subjects - has examined how network measures change as the brain develops over this period. Here we assessed the developmental trajectory of graph theory metrics of structural brain connectivity in a cross-sectional study of 467 subjects, aged 12 to 30. We computed network measures from 70×70 connectivity matrices of fiber density generated using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). We assessed global efficiency and modularity, and both age and age 2 effects were identified. HARDI-based connectivity maps are sensitive to the remodeling and refinement of structural brain connections as the human brain develops.
Resumo:
The 'rich club' coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development.
Resumo:
Human brain connectivity is disrupted in a wide range of disorders from Alzheimer's disease to autism but little is known about which specific genes affect it. Here we conducted a genome-wide association for connectivity matrices that capture information on the density of fiber connections between 70 brain regions. We scanned a large twin cohort (N=366) with 4-Tesla high angular resolution diffusion imaging (105-gradient HARDI). Using whole brain HARDI tractography, we extracted a relatively sparse 70×70 matrix representing fiber density between all pairs of cortical regions automatically labeled in co-registered anatomical scans. Additive genetic factors accounted for 1-58% of the variance in connectivity between 90 (of 122) tested nodes. We discovered genome-wide significant associations between variants and connectivity. GWAS permutations at various levels of heritability, and split-sample replication, validated our genetic findings. The resulting genes may offer new leads for mechanisms influencing aberrant connectivity and neurodegeneration. © 2012 IEEE.
Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics
Resumo:
Accurate identification of white matter structures and segmentation of fibers into tracts is important in neuroimaging and has many potential applications. Even so, it is not trivial because whole brain tractography generates hundreds of thousands of streamlines that include many false positive fibers. We developed and tested an automatic tract labeling algorithm to segment anatomically meaningful tracts from diffusion weighted images. Our multi-atlas method incorporates information from multiple hand-labeled fiber tract atlases. In validations, we showed that the method outperformed the standard ROI-based labeling using a deformable, parcellated atlas. Finally, we show a high-throughput application of the method to genetic population studies. We use the sub-voxel diffusion information from fibers in the clustered tracts based on 105-gradient HARDI scans of 86 young normal twins. The whole workflow shows promise for larger population studies in the future.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.
Resumo:
Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.