924 resultados para Giddens, Anthony
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
Commissioned print. Artist of the Month Club: February, 2010. January Curator: Mark Beasley. Invisible Exports Gallery, New York. Archival Inkjet Print on metallic silver polyester, 841 x 643mm. Edition of 50 + 10ap. Subsequently exhibited in the following exhibition: 'A Unicorn Basking in the Light of Three Glowing Suns' The Devos Art Museum School of Art & Design at Northern Michigan University October 8 – November 14, 2010 Curated by Anthony Elms and Philip von Zweck
Resumo:
Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole–Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries.
Resumo:
Techniques for the coherent generation and detection of electromagnetic radiation in the far infrared, or terahertz, region of the electromagnetic spectrum have recently developed rapidly and may soon be applied for in vivo medical imaging. Both continuous wave and pulsed imaging systems are under development, with terahertz pulsed imaging being the more common method. Typically a pump and probe technique is used, with picosecond pulses of terahertz radiation generated from femtosecond infrared laser pulses, using an antenna or nonlinear crystal. After interaction with the subject either by transmission or reflection, coherent detection is achieved when the terahertz beam is combined with the probe laser beam. Raster scanning of the subject leads to an image data set comprising a time series representing the pulse at each pixel. A set of parametric images may be calculated, mapping the values of various parameters calculated from the shape of the pulses. A safety analysis has been performed, based on current guidelines for skin exposure to radiation of wavelengths 2.6 µm–20 mm (15 GHz–115 THz), to determine the maximum permissible exposure (MPE) for such a terahertz imaging system. The international guidelines for this range of wavelengths are drawn from two U.S. standards documents. The method for this analysis was taken from the American National Standard for the Safe Use of Lasers (ANSI Z136.1), and to ensure a conservative analysis, parameters were drawn from both this standard and from the IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (C95.1). The calculated maximum permissible average beam power was 3 mW, indicating that typical terahertz imaging systems are safe according to the current guidelines. Further developments may however result in systems that will exceed the calculated limit. Furthermore, the published MPEs for pulsed exposures are based on measurements at shorter wavelengths and with pulses of longer duration than those used in terahertz pulsed imaging systems, so the results should be treated with caution.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.
Resumo:
An overview is given of a vision system for locating, recognising and tracking multiple vehicles, using an image sequence taken by a single camera mounted on a moving vehicle. The camera motion is estimated by matching features on the ground plane from one image to the next. Vehicle detection and hypothesis generation are performed using template correlation and a 3D wire frame model of the vehicle is fitted to the image. Once detected and identified, vehicles are tracked using dynamic filtering. A separate batch mode filter obtains the 3D trajectories of nearby vehicles over an extended time. Results are shown for a motorway image sequence.
Resumo:
This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.
Resumo:
An overview is given of a novel vision system for locating, recognising and tracking multiple vehicles.
Resumo:
The effects on the intestinal microbiota of a short period of marginal over-eating, characteristic of holiday or festival periods, were investigated in a pilot study. Fourteen healthy male subjects consumed a diet rich in animal protein and fat for seven days. During this period, the subjects significantly increased their dietary energy, protein, carbohydrate and fat intakes by 56, 59, 53 and 58%, respectively (all P < 0.05). The mean weight gain of 0.27 kg was less than the expected 1 kg, but this was consistent with a degree of under-reporting on the baseline diet. Fluorescence in situ hybridisation analysis confirmed the relative stability of each individual’s faecal microbiota but showed considerable variations between them. The diet was associated with a significant increase in numbers of total faecal bacteria and the bacteroides group, as detected by the universal bacterial probe (DAPI) and Bacteroides probe (Bac 303), respectively. Overall, there was a decrease in numbers of the Lactobacillus/Enterococcus group (Lab 158 probe; 2.8 ± 3.0% to 1.8 ± 1.8%) and the Bifidobacterium group (Bif 164 probe; 3.0 ± 3.7% to 1.7 ± 1.2%), although there was considerable inter-individual variation. Analysis of the relative proportions of each bacterial group as a percentage of the subject’s total bacteria showed a trend for a change in the intestinal microbiota that might be considered potentially unhealthy.
Resumo:
Context: During development managers, analysts and designers often need to know whether enough requirements analysis work has been done and whether or not it is safe to proceed to the design stage. Objective: This paper describes a new, simple and practical method for assessing our confidence in a set of requirements. Method: We identified 4 confidence factors and used a goal oriented framework with a simple ordinal scale to develop a method for assessing confidence. We illustrate the method and show how it has been applied to a real systems development project. Results: We show how assessing confidence in the requirements could have revealed problems in this project earlier and so saved both time and money. Conclusion: Our meta-level assessment of requirements provides a practical and pragmatic method that can prove useful to managers, analysts and designers who need to know when sufficient requirements analysis has been performed.
Resumo:
Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
Using 4 years of radar and lidar observations of layer clouds from the Chilbolton Observatory in the UK, we show that almost all (95%) ice particles formed at temperatures >-20°C appear to originate from supercooled liquid clouds. At colder temperatures, there is a monotonic decline in the fraction of liquid-topped ice clouds: 50% at -27°C, falling to zero at -37°C (where homogeneous freezing of water droplets occurs). This strongly suggests that deposition nucleation plays a relatively minor role in the initiation of ice in mid-level clouds. It also means that the initial growth of the ice particles occurs predominantly within a liquid cloud, a situation which promotes rapid production of precipitation via the Bergeron-Findeison mechanism.