948 resultados para Giants stars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Lithium abundances in open clusters are a very effective probe of mixing processes, and their study can help us to understand the large depletion of lithium that occurs in the Sun. Owing to its age and metallicity, the open cluster M 67 is especially interesting on this respect. Many studies of lithium abundances in M 67 have been performed, but a homogeneous global analysis of lithium in stars from subsolar masses and extending to the most massive members, has yet to be accomplished for a large sample based on high-quality spectra. Aims. We test our non-standard models, which were calibrated using the Sun with observational data. Methods. We collect literature data to analyze, for the first time in a homogeneous way, the non-local thermal equilibrium lithium abundances of all observed single stars in M 67 more massive than similar to 0.9 M-circle dot. Our grid of evolutionary models is computed assuming a non-standard mixing at metallicity [Fe/H] = 0.01, using the Toulouse-Geneva evolution code. Our analysis starts from the entrance into the zero-age main-sequence. Results. Lithium in M 67 is a tight function of mass for stars more massive than the Sun, apart from a few outliers. A plateau in lithium abundances is observed for turn-off stars. Both less massive (M >= 1.10 M-circle dot) and more massive (M >= 1.28 M-circle dot) stars are more depleted than those in the plateau. There is a significant scatter in lithium abundances for any given mass M <= 1.1 M-circle dot. Conclusions. Our models qualitatively reproduce most of the features described above, although the predicted depletion of lithium is 0.45 dex smaller than observed for masses in the plateau region, i.e. between 1.1 and 1.28 solar masses. More work is clearly needed to accurately reproduce the observations. Despite hints that chromospheric activity and rotation play a role in lithium depletion, no firm conclusion can be drawn with the presently available data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the possible exception of meteor impacts, high-energy astrophysical events such as supernovae, gamma-ray bursts (GRB) and flares are usually not taken into account for biological and evolutionary studies due to their low rates of occurrence. We show that a class of these events may occur at distances and time scales in which their biological effects are non-negligible, maybe more frequent than the impacts of large asteroids. We review the effects of four transient astrophysical sources of ionizing radiation on biospheres - stellar flares, giant flares from soft gamma repeaters (SGR), supernovae and GRB. The main damaging features of them are briefly discussed and illustrated. We point out some open problems and ongoing work. Received 28 February 2012, accepted 6 July 2012, first published online 10 August 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK(s) and WISE W1-4 systems are provided: (V - J)(circle dot) = 1.198, (V - H)(circle dot) = 1.484, (V - K-s)(circle dot) = 1.560, (J - H)(circle dot) = 0.286, (J - K-s)(circle dot) = 0.362, (H - K-s)(circle dot) = 0.076, (V - W1)(circle dot) = 1.608, (V - W2)(circle dot) = 1.563, (V - W3)(circle dot) = 1.552, and (V - W4)(circle dot) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near-and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T-eff, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3%+/- 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. HD 140283 is a nearby (V = 7.7) subgiant metal-poor star, extensively analysed in the literature. Although many spectra have been obtained for this star, none showed a signal-to-noise (S/N) ratio high enough to enable a very accurate derivation of abundances from weak lines. Aims. The detection of europium proves that the neutron-capture elements in this star originate in the r-process, and not in the s-process, as recently claimed in the literature. Methods. Based on the OSMARCS 1D LTE atmospheric model and with a consistent approach based on the spectrum synthesis code Turbospectrum, we measured the europium lines at 4129 angstrom and 4205 angstrom, taking into account the hyperfine structure of the transitions. The spectrum, obtained with a long exposure time of seven hours at the Canada-France-Hawaii Telescope (CFHT), has a resolving power of 81 000 and a S/N ratio of 800 at 4100 angstrom. Results. We were able to determine the abundance A(Eu) = -2.35 +/- 0.07 dex, compatible with the value predicted for the europium from the r-process. The abundance ratio [Eu/Ba] = +0.58 +/- 0.15 dex agrees with the trend observed in metal-poor stars and is also compatible with a strong r-process contribution to the origin of the neutron-capture elements in HD 140283.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. Several embedded clusters are found in the Galaxy. Depending on the formation scenario, most of them can evolve to unbounded groups that are dissolved within 10 Myr to 20 Myr. A systematic study of young stellar clusters that show distinct characteristics provides interesting information on the evolutionary phases during the pre-main sequence. To identify and to understand these phases we performed a comparative study of 21 young stellar clusters. Methods. Near-infrared data from 2MASS were used to determine the structural and fundamental parameters based on surface stellar density maps, radial density profile, and colour-magnitude diagrams. The cluster members were selected according to their membership probability, which is based on the statistical comparison with the cluster proper motion. Additional members were selected on the basis of a decontamination procedure that was adopted to distinguish field stars found in the direction of the cluster area. Results. We obtained age and mass distributions by comparing pre-main sequence models with the position of cluster members in the colour-magnitude diagram. The mean age of our sample is similar to 5 Myr, where 57% of the objects is found in the 4-10 Myr range of age, while 43% is <4 Myr old. Their low E(B - V) indicate that the members are not suffering high extinction (AV <1 mag), which means they are more likely young stellar groups than embedded clusters. Relations between structural and fundamental parameters were used to verify differences and similarities that could be found among the clusters. The parameters of most of the objects show the same trends or correlations. Comparisons with other young clusters show similar relations among mass, radius, and density. Our sample tends to have larger radius and lower volumetric density than embedded clusters. These differences are compatible with the mean age of our sample, which we consider intermediate between the embedded and the exposed phases of the stellar clusters evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Be stars possess gaseous circumstellar decretion disks, which are well described using standard alpha-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter alpha = 1.0 +/- 0.2, corresponding to a mass injection rate (M) over dot = (3.5 +/- 1.3) x 10(-8) M-circle dot yr(-1). Such a large value of a suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the kappa-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. Methods. We analyzed the CoRoT and spectroscopic data with several methods: CLEAN-NG, FREQFIND, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. Results. We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d(-1). The main frequencies are also recovered in the spectroscopic data. In particular we find that HD51452 undergoes gravito-inertial modes that are not in the domain of those excited by the kappa-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. Conclusions. Thanks to CoRoT data, we have detected a new kind of pulsations in HD51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

gamma Cas is the prototypical classical Be star and is recently best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around four XMM-Newton observations. The observational techniques included long baseline optical interferometry (LBOI) from two instruments at CHARA, photometry carried out by an automated photometric telescope and H alpha observations. Because gamma Cas is also known to be in a binary, we measured radial velocities from the H alpha line and redetermined its period as 203.55 +/- 0.20 days and its eccentricity as near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an system inclination angle near 45 degrees, and a larger radius than previously reported. In addition, the Be star began an "outburst" at the beginning of our campaign, made visible by a brightening and reddening of the disk during our campaign and beyond. Our analyses of the new high resolution spectra disclosed many attributes also found from spectra obtained in 2001 (Chandra) and 2004 (XMM-Newton). As well as a dominant hot (approximate to 14 keV) thermal component, the familiar attributes included: (i) a fluorescent feature of Fe K even stronger than observed at previous times; (ii) strong lines of N VII and Ne XI lines indicative of overabundances; and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that two absorption columns are required to fit the continuum. While the first one maintained its historical average of 1 x 10(21) cm(-2), the second was very large and doubled to 7.4 x 10(23) cm(-2) during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new measurement of the B-11(p,alpha(0))Be-8 has been performed applying the Trojan horse method (THM) to the H-2(B-11,alpha Be-8(0))n quasi-free reaction induced at a laboratory energy of 27 MeV. The astrophysical S(E) factor has been extracted from similar to 600 keV down to zero energy by means of an improved data analysis technique and it has been compared with direct data available in the literature. The range investigated here overlaps with the energy region of the light element LiBeB stellar burning and with that of future aneutronic fusion power plants using the B-11+p fuel cycle. The new investigation described here confirms the preliminary results obtained in the recent TH works. The origin of the discrepancy between the direct estimate of the B-11(p,alpha(0))Be-8 S(E)-factor at zero energy and that from a previous THM investigation is quantitatively corroborated. The results obtained here support, within the experimental uncertainties, the low-energy S(E)-factor extrapolation and the value of the electron screening potential deduced from direct measurements.