995 resultados para Geological modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.

Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.

Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacia de Bengala, localizada a Nordeste da Índia tem uma história evolutiva extraordinária, diretamente controlada bela fragmentação do Gondwana. O início da formação desta bacia é considerada como sendo relacionada ao final do evento da quebra, datado em 126 Ma quando a Índia separou do continente Antártico e da Austrália. Desde então, a placa continental Indiana viajou do pólo sul a uma velocidade muito rápida (16 cm/a) chocando-se com o hemisfério norte e fundindo-se com a Placa Eurasiana. Durante a viagem passou por cima de um hot spot, onde hoje estão localizadas as ilhas Seicheles, resultando em um dos maiores derrames de lava basáltica do mundo, conhecido como Deccan Trap. Na região onde a bacia de Bengala foi formada, não houve aporte significativo de sedimentos siliciclásticos, resultando na deposição de uma espessa plataforma carbonática do Cretáceo tardio ao Eoceno. Após este período, devido a colisão com algumas microplacas e a amalgamação com a Placa Eurasiana, um grande volume sedimentar siliciclástico foi introduzido para a bacia, associado também ao soerguimento da cadeia de montanhas dos Himalaias. Atualmente, a Bacia de Bengala possui mais de 25 km de sedimentos, coletados neste depocentro principal. Nesta dissertação foram aplicados conceitos básicos de sismoestratigrafia na interpretação de algumas linhas regionais. As linhas sísmicas utilizadas foram adquiridas recentemente por programa sísmico especial, o qual permitiu o imageamento sísmico a mais de 35km dentro da litosfera (crosta continental e transicional). O dado permitiu interpretar eventos tectônicos, como a presença dos Seawards Dipping Reflectors (SDR) na crosta transicional, coberto por sedimentos da Bacia de Bengala. Além da interpretação sísmica amarrada a alguns poços de controle, o programa de modelagem sedimentar Beicip Franlab Dionisos, foi utilizado para modelar a história de preenchimento da bacia para um período de 5,2 Ma. O nível relativo do nível do mar e a taxa de aporte sedimentar foram os pontos chaves considerados no modelo. Através da utilização dos dados sísmicos, foi possível reconhecer dez quebras de plataformas principais, as quais foram utilizadas no modelo, amarrados aos seus respectivos tempos geológico, provenientes dos dados dos poços do Plioceno ao Holoceno. O resultado do modelo mostrou que a primeira metade modelada pode ser considerada como um sistema deposicional retrogradacional, com algum picos transgressivos. Este sistema muda drasticamente para um sistema progradacional, o qual atuou até o Holoceno. A seção modelada também mostra que no período considerado o total de volume depositado foi em torno de 2,1 x 106 km3, equivalente a 9,41 x 1014 km3/Ma.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cladding band structure of air-guiding photonic crystal fibers with high air-filling fraction is calculated in terms of fiber shape variation. The fundamental photonic band gap dependence on structure parameters, air-filling fraction and spacing, is also investigated. The numerical results show that the band gap edges shift toward longer wavelength as the air-filling fraction is increased, whereas the relative band gap width increases linearly. For a fixed air-filling fraction, the band gap edges with respect to spacing keep constant. With this method, the simulation results agree well with the reported data. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.