950 resultados para Genes, Mitochondrial
Resumo:
Previous studies have proposed that selection has been involved in the differentiation of human mitochondrial DNA (mtDNA) and climate was the main driving force. This viewpoint, however, gets no support from the subsequent studies and remains controversia
Resumo:
The phylogeny of representative species of Chinese ranids was reconstructed using two nuclear (tyrosinase and rhodopsin) and two mitochondrial (12S rRNA, 16S rRNA) DNA fragments. Maximum parsimony, Bayesian, and maximum likelihood analyses were employed.-
Resumo:
Twenty-five chipmunk species occur in the world, of which only the Siberian chipmunk, Tamias sibiricus, inhabits Asia. To investigate mitochondrial cytochrome b sequence variations and population structure of the Siberian chipmunk in northeastern Asia, we
Resumo:
Bryan L. Stuart is thanked for his hard work to collect wild specimens, as well as providing insightful and useful comments on the data. We thank Abigail Wolf of the Field Museum for providing photographs of specimens. Robert Murphy of the Royal Ontario M
Resumo:
Previous investigations on Chinese mitochondrial DNA (mtDNA) variation revealed that the matrilineal gene pool of southern Han Chinese is rather complex, with much higher genetic diversity and more basal/ancient lineages than the northern Hans. The extrem
Resumo:
Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem
Resumo:
Mitochondrial disease currently received an increasing concern. However, the case-control design commonly adopted in this field is vulnerable to genetic background, population stratification and poor data quality. Although the phylogenetic analysis could
Resumo:
Phylogenetic relationships among representative species of the family Rhacophoridae were investigated based on 2904 bp of sequences from both mitochondrial (12S rRNA, 16S rRNA, the complete t-RNA for valine), and nuclear (tyrosinase, rhodopsin) genes. Max
Resumo:
Evidence of incongruence between mitochondrial and nuclear gene trees is now becoming documented with increasing frequency. Among the Old World monkeys, this discordance has been well demonstrated in the Cercopithecinae, but has not yet been investigated
Resumo:
Due to its numerous environmental extremes, the Tibetan Plateau -the world's highest plateau-is one of the most challenging areas of modern human settlement. Archaeological evidence dates the earliest settlement on the plateau to the Late Paleolithic, whi
Resumo:
The evolution of flight is the most important feature of birds, and this ability has helped them become one of the most successful groups of vertebrates. However, some species have independently lost their ability to fly. The degeneration of flight abilit
Resumo:
During the course of evolution, the human skeletal system has evolved rapidly leading to an incredible array of phenotypic diversity, including variations in height and bone mineral density. However, the genetic basis of this phenotypic diversity and the relatively rapid tempo of evolution have remained largely undocumented. Here, we discover that skeletal genes exhibit a significantly greater level of population differentiation among humans compared with other genes in the genome. The pattern is exceptionally evident at amino acid-altering sites within these genes. Divergence is greater between Africans and both Europeans and East Asians. In contrast, relatively weak differentiation is observed between Europeans and East Asians. SNPs with higher levels of differentiation have correspondingly higher derived allele frequencies in Europeans and East Asians. Thus, it appears that positive selection has operated on skeletal genes in the non-African populations and this may have been initiated with the human colonization of Eurasia. In conclusion, we provide genetic evidence supporting the rapid evolution of the human skeletal system and the associated diversity of phenotypes.
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
Hakka and Chaoshanese are two unique Han populations residing in southern China but with northern Han (NH) cultural traditions and linguistic influences. Although most of historical records indicate that both populations migrated from northern China in the last two thousand years, no consensus on their origins has been reached so far. To shed more light on the origins of Hakka and Chaoshanese, mitochondrial DNAs (mtDNAs) of 170 Hakka from Meizhou and 102 Chaoshanese from Chaoshan area, Guangdong Province, were analyzed. Our results show that some southern Chinese predominant haplogroups, e.g. B, F, and M7, have relatively high frequencies in both populations. Although median network analyses show that Hakka/Chaoshanese share some haplotypes with NH, interpopulation comparison reveals that both populations show closer affinity with southern Han (SH) populations than with NH. In consideration of previous results from nuclear gene (including Y chromosome) research, it is likely that matrilineal landscapes of both Hakka and Chaoshanese have largely been shaped by the local people during their migration southward and/or later colonization in southern China, and factors such as cultural assimilation, patrilocality, and even sex-bias in the immigrants might have played important roles during the process. Am J Phys Anthropol 141:124-130, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.