1000 resultados para Genètica vírica-Models matemàtics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El virus de la hepatitis C (HCV) es el principal agente causante de hepatitis crónica en el mundo. Basado en la divergencia de la secuencia de nucleótidos se lo ha clasificado en 6 genotipos y varios subtipos. La distribución de genotipos ha sido asociada a vías específicas de transmisión y a los movimientos poblacionales. Esta diversidad constituye las bases del manejo clínico del paciente y provee la información decisiva para las estrategias terapéuticas. Asimismo, la heterogeneidad genética de HCV continúa siendo el mayor obstáculo para el desarrollo de vacunas y terapias efectivas. Estudios previos realizados en Argentina demuestran que la distribución de genotipos es diferente entre regiones geográficas muy cercanas. En general el genotipo 1 es el más prevalente en la región este de nuestro país y en la región central existe una particular alta prevalencia de genotipo 2 (HCV-2) (>55%), 2c, y HCV-1 en usuarios de drogas endovenosas. A fin de confirmar la existencia de dos eventos de transmisión independientes con claras implicancias clínico terapéuticas, el objetivo de este proyecto es completar y profundizar el estudio del proceso de diversificación de estos genotipos en Córdoba mediante análisis moleculares y bioinformáticos. Así, más muestras y otras regiones genómicas deberían ser analizadas (NS5B/E2) para determinar el origen y caracterizar los patrones de diversificación. En este sentido, un reciente estudio serológico, realizado por personal del ministerio de Salud, que involucró a 3782 individuos habitantes de cuatro áreas geográficas de la provincia de Córdoba reveló una alta prevalencia de HCV (>5%). Dichas muestras son la base del estudio propuesto en este plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enfermedad de Chagas (EC), es una infección parasitaria, causada por el parásito protozoarío Trypanosoma cruzi (T. cruzi), que afecta a millones de personas en América del Sur y Central. Después de la entrada en el huésped vertebrado, el parásito es capaz de infectar una amplia variedad de células. La fase inicial de la infección es llamada fase aguda y es caracterizada por alta parasitemia y parasitismo tisular. A continuación de la fase aguda, el paciente entra en una fase de curso clínico variable, ya que puede presentarse con ausencia de síntomas hasta severos daños cardíacos y gastrointestinales que pueden aparecen muchos años después de la primoinfección. La severidad y prevalencia de las diferentes formas clínicas de la EC varían entre diferentes regiones, las causas de la heterogeneidad epidemiológica y clínica entre los pacientes no están completamente dilucidadas. Es muy probable que, en estos diferentes fenotipos participen tanto la variabilidad genética del parásito como la del individuo infectado. La influencia de las características genéticas del parásito sobre las diversas manifestaciones clínicas ha sido abordada por distintos autores. Podemos especular que, las formas clínicas de la EC, pueden ser el producto de la combinación, de la composición genética del parasito y la del paciente. En la actualidad, pocos grupos estudian la participación de los factores genéticos de los pacientes chagásicos en el desarrollo de la EC. Las observaciones muestran gran disparidad de resultados, posiblemente debido a que los estudios comprenden un número pequeño de individuos y diferentes métodos utilizados para el análisis y clasificación de la patología. Polimorfismos genéticos de marcadores uniparentales: ADNmt (linaje materno) y cromosoma Y (herencia paterna), han demostrado gran utilidad para explorar tanto la variabilidad como las relaciones genéticas y son utilizados ya sea, para estudios de linaje o para investigar la asociación de diferentes haplogrupos con la susceptibilidad a desarrollar enfermedades. El objetivo de este proyecto es identificar una posible asociación entre determinados haplogrupos del ADNmt y del cromosoma Y (CY) con las diferentes presentaciones clínicas de la EC, a fin de detectar marcadores genéticos que contribuyan a describir el fenotipo del paciente chagásico cardiópata. Este trabajo se realizará con pacientes de un área endémica de la provincia de Córdoba (Dpto Cruz del Eje), no emparentados que posean serología positiva para dos o más pruebas de EC y con un seguimiento clínico completo durante varios años que permite clasificarlos en dos grandes grupos: I. Pacientes crónicos con patología cardíaca demostrada, (sintomáticos S). II. Pacientes crónicos sin patología cardiaca demostrada (asintomáticos A). Se analizará la seropositividad a T. cruzi en familias de áreas rurales y urbanas asociada a los grupos S y A. Se describirán los haplogrupos más frecuentes del ADNmt mediante la amplificación y secuenciación de los segmentos hipervariables de la región control. Las secuencias obtenidas serán alineadas y comparadas con las secuencias de Referencias de Cambridge. Se amplificarán 17 loci de secuencias cortas repetidas en tamden (Y-STR). Para el análisis de polimorfismo del CY. A fin de establecer, si existe una relación entre los haplogrupos del ADNmt y del CY en los grupos de las pacientes. Se analizará estaditicamente con que magnitud contribuyen los factores de riesgos clásicos para enfermedades cardiovasculares y el perfil genético del huésped a la variabilidad de la presentación de la EC. El diseño del proyecto es transversal y cuenta con la aprobación del comité de Bioética del Hospital Nacional de Clínicas UNC, y está de acuerdo con la declaración de Helsinski. Todos los pacientes firmaran el consentimiento informado. El material obtenido de cada paciente será utilizado exclusivamente para la determinación de los polimorfismos presentes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El descubrimiento de técnicas más sensibles para la detección del T. cruzi en el enfermo chagásico rescató el rol primordial del parásito en la patogenia y actualmente se considera a la enfermedad como el producto de la interacción de los genomas del parásito y el humano. Sin embargo aún queda por responder por qué el 30% de las personas infectadas evolucionan hacia una enfermedad cardíaca y el 70% permanece asintomático aunque con serología persistente; así como también la amplia variabilidad clínica, que puede resultar desde una cardiopatía sin consecuencias hasta producir muerte súbita. En este sentido, se ha descripto que la variabilidad genética del parásito debe estar relacionada con el tropismo del mismo a los diferentes órganos del huésped y, por lo tanto, con la forma clínica de la enfermedad y con las diferencias observadas luego del tratamiento específico de la enfermedad. Es por ello que proponemos determinar la importancia que tiene la composición genética del aislamiento de T. cruzi que infectó al huésped y/o la de los clones diferentes que pueden aparecer en sangre para explicar la amplia variabilidad de síntomas y signos que manifiestan los pacientes con cardiopatía chagásica crónica. Estos resultados contribuirán al entendimiento de la fisiopatogenia de la miocardiopatía chagásica y sus variabilidades clínicas y facilitarán establecer el pronóstico y tratamiento de la enfermedad. Pacientes que concurran al Hospital Materno Infantil de la Provincia de Córdoba, al Hospital Nacional de Clínicas y a la Clínica Sucre serán tratados de acuerdo con la declaración de Helsinki y firmarán consentimiento informado. Se seguirá la evolución clínico-cardiológica por radiografía, electrocardiografía y ecocardiografía. La serología para Chagas se determinará por HAI-ELISA. Se obtendrán muestras de sangre de estos pacientes que se clasificarán con serología positiva para Chagas sin cardiopatía, con cardiopatía leve y con cardiopatía severa. Extracción del ADN: las muestras de sangre periférica de cada paciente se mezclarán con igual volumen de guanidina 6M/EDTA 0,5M. El ADN se extraerá por técnicas convencionales con fenol:cloroformo:alcohol isoamílico y luego se precipitará con etanol. Finalmente la solución se resuspenderá en agua estéril libre de nucleasas. Se conservará a -4º C hasta su uso para la amplificación del contenido de ADN del parásito por la reacción en cadena de la polimerasa (PCR). PCR: la detección de los parásitos en cada muestra se determinará mediante la amplificación por PCR de un fragmento de la región variable correspondiente al minicírculo del ADN del kinetoplasto (kADN), utilizando primers específicos para dicha región. Análisis de la región variable del kADN por enzimas de restricción: la caracterización de los parásitos de cada muestra se realizará además mediante el análisis de los fragmentos producidos luego de la digestión con enzimas de restricción (RFLP). El amplificado producto de la PCR se utilizará para la digestión con las enzimas de restricción y los fragmentos obtenidos serán separados por electroforesis en geles de agarosa 2% teñidos con bromuro de etidio. Análisis de los resultados: Los perfiles de bandas obtenidos luego de la digestión con las enzimas de restricción de las muestras de sangre de los pacientes se correlacionarán con la sintomatología clínica de cada uno de ellos para determinar si existe relación entre la variabilidad genética del parásito infectante y la variedad clínica presentada. Los perfiles de bandas obtenidos luego de la RFLP de las muestras de sangre se analizarán cualitativamente por observación de los geles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los caracteres de historia de vida son sensibles a la variación histórica o actual de los factores ambientales. Estudiar dicha variabilidad mediante la realización de estudios comparativos permite obtener evidencias sobre las causas de la evolución de ciertos caracteres. Los lagartos son excelentes modelos para el estudio de selección sexual y evolución del comportamiento social y reproductivo debido a que su relativa baja dispersión podría tener consecuencias evolutivas profundas en el desarrollo de distintas estrategias, ya que las poblaciones, al encontrarse más aisladas, podrían verse influenciadas por las fuerzas selectivas locales, mostrando una alta heterogeneidad espacial y temporal. Por eso nos propusimos realizar este trabajo para evaluar si existen diferentes estrategias reproductivas en los lagartos del género Tupinambis en distintos contextos ecológicos de la provincia de Córdoba. Para ello analizaremos distintas características de la historia de vida en poblaciones de estas especies tales como estructura de tamaño, sexo operativo, frecuencia reproductiva, tamaño de camada, condición corporal reproductiva, tamaño de madurez sexual, características espermáticas, elección de sitios de nidificación, etc. Además analizaremos la estructura genética de las poblaciones para inferir procesos demográficos históricos y patrones actuales de flujo génico y conectividad. The life history traits are sensitive to historical or current variation of environmental factors. Studying this variability by performing comparative studies allows obtaining evidence on the causes of the evolution of certain characters. Lizards are excellent models for studying sexual selection and evolution of social and reproductive behavior because their relatively low dispersal capabilities could have profound evolutionary consequences in the development of different strategies, since isolated populations may be stronger influenced by local selective forces, showing a high spatial and temporal heterogeneity. We decided to perform this study to assess whether there are different reproductive strategies in lizards of the genus Tupinambis in different ecological contexts of the Cordoba province. We will analyze different life history traits in populations of these species such as size structure, operational sex ratio, reproductive frequency, litter size, body condition, size at sexual maturity, sperm characteristics, choice of nesting sites, etc.. We also analyzed the genetic structure of populations to infer historical demographic processes and current patterns of gene flow and connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A insuficiência cardíaca (IC) é uma doença complexa, onde diversos mecanismos fisiopatológicos atuam e diferentes polimorfismos genéticos estão envolvidos. O sistema adrenérgico está diretamente relacionado a esta patologia participando da auto-regulação cardiovascular, tendo papel crucial na deteriorização da função cardíaca. Os beta-bloqueadores surgiram como um grande avanço da cardiologia no tratamento da IC, no entanto a resposta medicamentosa varia para cada paciente podendo estar relacionado a diversos fatores, entre eles o genético. A determinação pela genética do desenvolvimento da IC, da resposta medicamentosa e prognóstico são questões que serão abrangidas nesta revisão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O óxido nítrico (NO), primariamente identificado como um fator relaxante derivado do endotélio, é um radical livre atuante na sinalização de diferentes processos biológicos. A identificação das isoformas das sintases do NO (NOS) e a subsequente caracterização dos mecanismos de ativação celulares das enzimas possibilitaram tanto a compreensão de parte das interações fisiológicas como a compreensão de parte dos mecanismos de doença, na qual o NO está envolvido. A isoforma endotelial da NOS (eNOS), expressa principalmente no endotélio vascular, desempenha importante papel na regulação da reatividade vascular e no desenvolvimento e na progressão da aterosclerose. Esta revisão tem o propósito de contextualizar o leitor sobre a estrutura da eNOS e seus mecanismos de ativação celular. Tendo em vista os avanços da biologia molecular, trataremos ainda dos conhecidos mecanismos de regulação da expressão gênica e do papel de variantes no código genético da eNOS associados a fenótipos cardiovasculares. Embora se reconheça a importância do NO como molécula ateroprotetora, nossa atenção estará voltada à revisão de literatura envolvendo NO e sua participação na modulação do fenótipo de vasodilatação muscular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data Mining, Learning from data, graphical models, possibility theory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemidentification, evolutionary automatic, data-driven model, fuzzy Takagi-Sugeno grammar, genotype interpretability, toxicity-prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

experimental design, mixed model, random coefficient regression model, population pharmacokinetics, approximate design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.