940 resultados para Gear efficiency and gear selectivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO(2). The first and largest eruption caused the inward collapse of a stratovolcano and produced the 'Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands > 40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, largescale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the 'Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km(3) of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of similar to 12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24x10(13) kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and implementation of a low-voltage-stress Class-EF power amplifier (PA) with extended maximum operating frequency, named as ‘third-harmonic-peaking Class-EF PA’. A novel transmission-line load network is proposed to meet the Class-EF impedance requirements at the fundamental, all even harmonics, and third harmonic components. It also provides an impedance matching to a 50 Ω load. A more effective λ/8 open- and shorted-stub network is deployed at the drain of the transistor replacing the traditional λ/4 transmission line. Implemented using GaN HEMTs, the PA delivered 39.2 dBm output power with 80.5% drain efficiency and 71% PAE at 2.22 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main applications of serum proteomics is the identification of new biomarkers for animal disease or animal production. However, potential obstacles to these studies are the poor performance of affinity serum depletion methods based on human antigens when using animal samples, and loss of minor serum components bound to albumin and other proteins. In the present study, we have analyzed the efficiency and reproducibility of the ProteoMiner® beads with bovine and porcine serum samples, and compared to a traditional immunoaffinity-based albumin and IgG depletion system specific for human samples. The ProteoMiner kit is based on the use of a combinatorial peptide binding library and intends to enrich low-abundance proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the utilization of deep eutectic solvents (DESs) based on the mixture of the N-methylacetamide (MAc) with a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3) as electrolytes for carbon-based supercapacitors at 80 °C. The investigated DESs were formulated by mixing a LiX with the MAc (at xLi = 0.25). All DESs show the typical eutectic characteristic with eutectic points localized in the temperature range from −85 to −52 °C. Using thermal properties measured by differential scanning calorimetry (DSC), solid–liquid equilibrium phase diagrams of investigated LiX–MAc mixtures were then depicted and also compared with those predicted by using the COSMOThermX software. However, the transport properties of selected DESs (such as the conductivity (σ) and the fluidity (η–1)) are not very interesting at ambient temperature, while by increasing the temperature up to 80 °C, these properties become more favorable for electrochemical applications, as shown by the calculated Walden products: w = ση–1 (mS cm–1 Pa–1 s–1) (7 < w < 16 at 25 °C and 513 < w < 649 at 80 °C). This “superionicity” behavior of selected DESs used as electrolytes explains their good cycling ability, which was determined herein by cyclic voltammetry and galvanostic charge–discharge methods, with high capacities up to 380 F g–1 at elevated voltage and temperature, i.e., ΔE = 2.8 V and 80 °C for the LiTFSI–MAc mixture at xLi = 0.25, for example. The electrochemical resistances ESR (equivalent series resistance) and EDR (equivalent diffusion resistance) evaluated using electrochemical impedance spectroscopy (EIS) measurements clearly demonstrate that according to the nature of anion, the mechanism of ions adsorption can be described by pure double-layer adsorption at the specific surface or by the insertion of desolvated ions into the ultramicropores of the activated carbon material. The insertion of lithium ions is observed by the presence of two reversible peaks in the CVs when the operating voltage exceeds 2 V. Finally, the efficiency and capacitance of symmetric AC/AC systems were then evaluated to show the imbalance carbon electrodes caused by important lithium insertion at the negative and by the saturation of the positive by anions, both mechanisms prevent in fact the system to be operational. Considering the promising properties, especially their cost, hazard, and risks of these DESs series, their introduction as safer electrolytes could represent an important challenge for the realization of environmentally friendly EDLCs operating at high temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Allyl substituted five six and seven membered ring lactams, are readily available in good yields and reasonable selectivity by a formal Meerwein Eschenmoser [3,3] rearrangement, using readily available methoxymethyleniminium salts and lithium alkoxides derived from allyl alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbides are important phases in heterogeneous catalysis. However, the understanding of carbide phases is inadequate: Fe and Co are the two commercial catalysts for Fischer-Tropsch (FT) synthesis, and experimental work showed that Fe carbide is the active phase in FT synthesis, whereas the appearance of Co carbide is considered as a possible deactivation cause, TO understand very different catalytic roles of carbides, all the key elementary steps in FT synthesis, that is, CO dissociation, C(1) hydrogenation, and C(1)+C(1) coupling, are extensively investigated on both carbide surfaces using first principles calculations. In particular, the most important issues in FT synthesis, the activity and methane selectivity, on the carbide surfaces are quantitatively determined and analyzed. They are also discussed together with metallic Fe and Co surfaces. It is found that (i) Fe carbide is more active than metallic Fe and has similar methane selectivity to Fe, being consistent with the experiments; and (ii) Co carbide is less active than Co and has higher methane selectivity, providing evidence on the molecular level to support the suggestion that the formation of Co carbide is a cause of relatively high methane selectivity and deactivation on Co catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a protocol for the generation and validation of bacteria microarrays and their application to the study of specific features of the pathogen's surface and interactions with host receptors. Bacteria were directly printed on nitrocellulose-coated glass slides, using either manual or robotic arrayers, and printing quality, immobilization efficiency and stability of the arrays were rigorously controlled by incorporating a fluorescent dye into the bacteria. A panel of wild type and mutant strains of the human pathogen Klebsiella pneumoniae, responsible for nosocomial and community-acquired infections, was selected as model bacteria, and SYTO-13 was used as dye. Fluorescence signals of the printed bacteria were found to exhibit a linear concentration-dependence in the range of 1 x 10(8) to 1 x 10(9) bacteria per ml. Similar results were obtained with Pseudomonas aeruginosa and Acinetobacter baumannii, two other human pathogens. Successful validation of the quality and applicability of the established microarrays was accomplished by testing the capacity of the bacteria array to detect recognition by anti-Klebsiella antibodies and by the complement subcomponent C1q, which binds K. pneumoniae in an antibody-independent manner. The biotin/AlexaFluor-647-streptavidin system was used for monitoring binding, yielding strain-and dose-dependent signals, distinctive for each protein. Furthermore, the potential of the bacteria microarray for investigating specific features, e.g. glycosylation patterns, of the cell surface was confirmed by examining the binding behaviour of a panel of plant lectins with diverse carbohydrate-binding specificities. This and other possible applications of the newly developed arrays, as e.g. screening/evaluation of compounds to identify inhibitors of host-pathogen interactions, make bacteria microarrays a useful and sensitive tool for both basic and applied research in microbiology, biomedicine and biotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxometalate-based polymer immobilized ionic liquid phase catalyst [PO4{WO(O-2)(2)}(4)]@PIILP has been prepared by anion exchange of ring opening metathesis-derived pyrrolidinium-decorated norbornene/ cyclooctene copolymer and shown to be a remarkably efficient system for the selective oxidation of sulfides under mild conditions. A cartridge packed with a mixture of [PO4{WO(O-2)(2)}(4)]@PIILP and silica operated as a segmented or continuous flow process and gave good conversions and high selectivity for either sulfoxide (92% in methanol at 96% conversion for a residence time of 4 min) or sulfone (96% in acetonitrile at 96% conversion for a residence time of 15 min). The immobilized catalyst remained active for 8 h under continuous flow operation with a stable activity/selectivity profile that allowed 6.5 g of reactant to be processed (TON = 46 428) while a single catalyst cartridge could be used for the consecutive oxidation of multiple substrates giving activity-selectivity profiles that matched those obtained with fresh catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of high energy efficiency and economic benefit promote the wide application of combined heat and power system (CHP) based microgrid. Firstly, a mathematical model of the CHP based microgrid is developed. Then, a cost function for the coordination of heat and electric load is proposed. Finally, an optimal dispatch model is developed to achieve the economical and coordinated operation of the CHP based microgrid system. Simulation results verify effectiveness of the proposed dispatch model, which is a powerful tool for the energy management of CHP based microgrid with renewable energy resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacogenomics field is crucial for optimizing the selection of which chemotherapy regimen to use according to the patient's genomic profile. Indeed, the individual's inherited genome accounts for a large proportion of the variation in his or her response to chemotherapeutic agents both in terms of efficiency and toxicity. Patients with metastatic disease are more likely to receive different lines of chemotherapy with variable efficacy and experience some related complications. It is therefore critical to tailor the best therapeutic arsenal to improve the efficacy and avoid as much as possible related complications that are susceptible to interrupt the treatment. The pharmacogenomics approach investigates for each drug the implicated metabolic pathway and the potential personal variations in gene function. The aim of this review is to present a clear overview of the most accurate polymorphisms that have been identified as related to drug response in patients with mCRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the catalytic hydrogenation of benzene to cyclohexane, the separation of unreacted benzene from the product stream is inevitable and essential for an economically viable process. In order to evaluate the separation efficiency of ionic liquids (ILs) as a solvent in this extraction processes, the ternary (liquid + liquid) equilibrium of 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6] (n = 4, 5, 6), with benzene and cyclohexane was studied at T = 298.15 K and atmospheric pressure. The reliability of the experimentally determined tie-line data was confirmed by applying the Othmer–Tobias equation. The solute distribution coefficient and solvent selectivity for the systems studied were calculated and compared with literature data for other ILs and sulfolane. It turns out that the benzene distribution coefficient increases and solvent selectivity decreases as the length of the cation alkyl chain grows, and the ionic liquids [Cnmim][PF6] proved to be promising solvents for benzene–cyclohexane extractive separation. Finally, an NRTL model was applied to correlate and fit the experimental LLE data for the ternary systems studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separation of benzene and cyclohexane is one of the most important and difficult processes in the petrochemical industry, especially for low benzene concentration. In this work, three ionic liquids (ILs), [Bmim][BF 4], [Bpy][BF 4], and [Bmim][SCN], were investigated as the solvent in the extraction of benzene from cyclohexane. The corresponding ternary liquid-liquid equilibria (LLE) were experimentally determined at T = 298.15 K and atmospheric pressure. The LLE data were correlated with the nonrandom two-liquid model, and the parameters were fitted. The separation capabilities of the ILs were evaluated in terms of the benzene distribution coefficient and solvent selectivity. The effect of the IL structure on the separation was explained based on a well-founded physical model, COSMO-RS. Finally, the extraction processes were defined, and the operation parameters were analyzed. It shows that the ILs studied are suitable solvents for the extractive separation of benzene and cyclohexane, and their separation efficiency can be generally ranked as [Bmim][BF 4] > [Bpy][BF 4] > [Bmim][SCN]. The extraction process for a feed with 15 mol % benzene was optimized. High product purity (cyclohexane 0.997) and high recovery efficiency (cyclohexane 96.9% and benzene 98.1%) can be reached. © 2012 American Chemical Society.