989 resultados para GPS Network
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
The performance analysis of adaptive physical layer network-coded two-way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. The deep channel fade conditions which occur at the relay referred as the singular fade states fall in the following two classes: (i) removable and (ii) non-removable singular fade states. With every singular fade state, we associate an error probability that the relay transmits a wrong network-coded symbol during the BC phase. It is shown that adaptive network coding provides a coding gain over fixed network coding, by making the error probabilities associated with the removable singular fade states contributing to the average Symbol Error Rate (SER) fall as SNR-2 instead of SNR-1. A high SNR upper-bound on the average end-to-end SER for the adaptive network coding scheme is derived, for a Rician fading scenario, which is found to be tight through simulations. Specifically, it is shown that for the adaptive network coding scheme, the probability that the relay node transmits a wrong network-coded symbol is upper-bounded by twice the average SER of a point-to-point fading channel, at high SNR. Also, it is shown that in a Rician fading scenario, it suffices to remove the effect of only those singular fade states which contribute dominantly to the average SER.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.
Resumo:
The design of modulation schemes for the physical layer network-coded two-way MIMO relaying scenario is considered, with the denoise-and-forward protocol which employs two phases: Multiple Access phase and Broadcast phase. It is shown that for MIMO two-way relaying, the minimum distance of the effective constellation at the relay becomes zero when all the rows of the channel fade coefficient matrix belong to a finite number of vector subspaces referred to as the singular fade subspaces. The singular fade subspaces can be classified into two kinds based on whether their harmful effects can be removed or not: (i) the removable and (ii) the non-removable singular fade subspaces. It is shown that network coding maps obtained by the completion of appropriate partially filled Latin Rectangles can remove the harmful effects of all the removable singular fade subspaces. For 2(lambda)-PSK signal set, the removable and non-removable singular fade subspaces are characterized and, it is shown that the number of non-removable singular fade subspaces is a small fraction of the total number of singular fade subspaces and this fraction tends to zero as the constellation size tends to infinity. The Latin Rectangles for the case when the end nodes use different number of antennas are shown to be obtainable from the Latin Squares for the case when they use the same number of antennas. Also, the network coding maps which remove all the removable singular singular fade subspaces are shown to be obtainable from a small set of Latin Squares. The removal of all the singular fade subspaces by properly choosing the network coding map, provides a gain of 5.5 dB over the conventional Exclusive-OR network coding, in a Rayleigh fading scenario with 2 antennas at the end nodes and one antenna at the relay node, for 4-PSK signal set.
Resumo:
There is a growing recognition of the need to integrate non-trophic interactions into ecological networks for a better understanding of whole-community organization. To achieve this, the first step is to build networks of individual non-trophic interactions. In this study, we analyzed a network of interdependencies among bird species that participated in heterospecific foraging associations (flocks) in an evergreen forest site in the Western Ghats, India. We found the flock network to contain a small core of highly important species that other species are strongly dependent on, a pattern seen in many other biological networks. Further, we found that structural importance of species in the network was strongly correlated to functional importance of species at the individual flock level. Finally, comparisons with flock networks from other Asian forests showed that the same taxonomic groups were important in general, suggesting that species importance was an intrinsic trait and not dependent on local ecological conditions. Hence, given a list of species in an area, it may be possible to predict which ones are likely to be important. Our study provides a framework for the investigation of other heterospecific foraging associations and associations among species in other non-trophic contexts.
Resumo:
Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.
Resumo:
The design of modulation schemes for the physical layer network-coded two-way relaying scenario is considered with a protocol which employs two phases: multiple access (MA) phase and broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of MA interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called the exclusive law. We show that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, that this relationship can be used to get the network coding maps satisfying the exclusive law. The channel fade states for which the minimum distance of the effective constellation at the relay become zero are referred to as the singular fade states. For M - PSK modulation (M any power of 2), it is shown that there are (M-2/4 - M/2 + 1) M singular fade states. Also, it is shown that the constraints which the network coding maps should satisfy so that the harmful effects of the singular fade states are removed, can be viewed equivalently as partially filled Latin Squares (PFLS). The problem of finding all the required maps is reduced to finding a small set of maps for M - PSK constellations (any power of 2), obtained by the completion of PFLS. Even though the completability of M x M PFLS using M symbols is an open problem, specific cases where such a completion is always possible are identified and explicit construction procedures are provided. Having obtained the network coding maps, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map chosen in a particular region. It is shown that the complex plane can be partitioned into two regions: a region in which any network coding map which satisfies the exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for M = 4-PSK signal set by Koike-Akino et al., when specialized for Simulation results show that the proposed scheme performs better than the conventional exclusive-OR (XOR) network coding and in some cases outperforms the scheme proposed by Koike-Akino et al.
Resumo:
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.
Resumo:
Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define `synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in `synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest utilities of our framework to several aspects of network physiology including cell assemblies, population codes, and oscillatory synchrony.
Resumo:
Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.
Resumo:
We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.
Resumo:
In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.