905 resultados para GAS-TRANSPORT PROPERTIES
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]
Resumo:
Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.
Resumo:
Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.
Resumo:
Several experimental techniques have been used in order to characterize the properties of multifilamentary Bi-2223 / Ag tapes. Pristine samples were investigated by electrical resistivity, current-voltage characteristics and DC magnetic moment measurements. Much emphasis is placed on comparing transport (direct) and magnetic (indirect) methods for determining the critical current density as well as the irreversibility line and resolving usual lacks of consistency due to the difference in measurement techniques and data analysis. The effect of an applied magnetic field, with various strengths and directions, is also studied and discussed. Next, the same combination of experiments was performed on bent tapes in order to bring out relevant information regarding the intergranular coupling. A modified Brandt model taking into account different types of defects within the superconducting filaments is proposed to reconciliate magnetic and transport data.
Resumo:
La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]
Resumo:
The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
GaN epilayers on sapphire (0001) substrates were grown by the gas source molecular beam epitaxy (GSMBE) method using ammonia (NH,) gas as the nitrogen source. Properties of gallium nitride (GaN) epilayers grown under various growth conditions were investigated. The growth rate is up to 0.6 mu m/h in our experiments. Cathodoluminescence, photoluminescence and Hall measurements were used to characterize the films. It was shown that the growth parameters have a significant influence on the GaN properties. The yellow luminescence was enhanced at higher growth temperature. And a blue emission which maybe related to defects or impurity was observed. Although the emission at 3.31 eV can be suppressed by a low-temperature buffer layer, a high-quality GaN epilayer can be obtained without the buffer layer. (C) 1998 Elsevier Science B.V. All rights reserved.