989 resultados para GAMMA-ORYZANOL
Resumo:
INTRODUCTION Atopic dermatitis (AD) has been related to a deficiency of delta-6-desaturase, an enzyme responsible for the conversion of linoleic acid to gamma-linolenic acid (GLA). Evening primrose oil (EPO) contains high amounts of GLA. Therefore, this study investigated whether EPO supplementation results in an increase in plasma GLA and its metabolite dihomo-gamma-linolenic acid (DGLA) correlating with clinical improvement of AD, assessed by the SCORing Atopic Dermatitis (SCORAD) index. METHODS The open study included 21 patients with AD. EPO (4-6 g) was administered daily for 12 weeks. Before treatment, and 4 and 12 weeks after initiation of EPO supplementation, objective SCORAD was assessed and plasma concentrations of GLA and DGLA were determined by gas chromatography. RESULTS A significant increase in plasma GLA and DGLA levels and a decrease in the objective SCORAD were observed 4 and 12 weeks after initiation of EPO treatment. In the per-protocol population (n = 14), a significant inverse correlation between the changes in plasma GLA levels and SCORAD was found (P = 0.008). CONCLUSION The clinical disease activity under EPO treatment correlates with the individual increase in plasma GLA levels. Thus, the results of this pilot study indicate that an increase in plasma GLA might be used as predictive parameter for responsiveness of AD to EPO therapy.
Resumo:
Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions.
Resumo:
Various assays have been used as an aid to diagnose failure of passive transfer (FPT) of immunoglobulins in neonatal foals, but often lack sensitivity as screening tests, or are time consuming to perform and impractical as confirmatory tests. The aim of the present study was to evaluate whether measurement of serum total globulins (TG; i.e. total protein minus albumin) can be used to estimate the electrophoretic gamma globulin (EGG) fraction in hospitalised neonatal foals with suspected FPT. Sample data from 56 foals were evaluated retrospectively. The coefficient of rank correlation was 0.84. The area under the curve of ROC analysis was 0.887, 0.922 and 0.930 for EGG concentrations <2 g/L, < 4 g/L and <8 g/L, respectively. Cut-offs for TG achieved ≥90% sensitivity for detecting EGG <2 g/L, < 4 g/L and <8 g/L, with negative predictive values of >97% and >94%, using prevalence of 15% and 30%, respectively. These results suggest that measurement of TG can be used as a guide to predicting EGG, provided that appropriate cut-off values are selected, and this technique could be a useful initial screening test for FPT in foals.
Resumo:
OBJECTIVES Animal and human studies have shown that sleep may have an impact on functional recovery after brain damage. Baclofen (Bac) and gamma-hydroxybutyrate (GHB) have been shown to induce physiological sleep in humans, however, their effects in rodents are unclear. The aim of this study is to characterize sleep and electroencelphalogram (EEG) after Bac and GHB administration in rats. We hypothesized that both drugs would induce physiological sleep. METHODS Adult male Sprague-Dawley rats were implanted with EEG/electromyogram (EMG) electrodes for sleep recordings. Bac (10 or 20 mg/kg), GHB (150 or 300 mg/kg) or saline were injected 1 h after light and dark onset to evaluate time of day effect of the drugs. Vigilance states and EEG spectra were quantified. RESULTS Bac and GHB induced a non-physiological state characterized by atypical behavior and an abnormal EEG pattern. After termination of this state, Bac was found to increase the duration of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep (∼90 and 10 min, respectively), reduce sleep fragmentation and affect NREM sleep episode frequency and duration (p<0.05). GHB had no major effect on vigilance states. Bac drastically increased EEG power density in NREM sleep in the frequencies 1.5-6.5 and 9.5-21.5 Hz compared to saline (p<0.05), while GHB enhanced power in the 1-5-Hz frequency band and reduced it in the 7-9-Hz band. Slow-wave activity in NREM sleep was enhanced 1.5-3-fold during the first 1-2 h following termination of the non-physiological state. The magnitude of drug effects was stronger during the dark phase. CONCLUSION While both Bac and GHB induced a non-physiological resting state, only Bac facilitated and consolidated sleep, and promoted EEG delta oscillations thereafter. Hence, Bac can be considered a sleep-promoting drug and its effects on functional recovery after stroke can be evaluated both in humans and rats.
Resumo:
A goal of testing for latent tuberculosis (TB) infection is to identify individuals who are at increased risk for the development of active TB. No laboratory tool is currently available to distinguish between individuals in the process of progressing from latent TB infection towards active disease and those who are not. Determination of the interferon-gamma and interleukin-2 T cell signature might provide an additional and rapid tool to evaluate treatment necessity and clinical management of a patient. Here, we present three cases of interferon-gamma release assay-positive patients with differing interferon-gamma and interleukin-2 signatures when analyzed by the Fluorospot assay.
Resumo:
Gamma-hydroxybutyrate (GHB) is a GHB-/GABAB-receptor agonist. Reports from GHB abusers indicate euphoric, prosocial, and empathogenic effects of the drug. We measured the effects of GHB on mood, prosocial behavior, social and non-social cognition and assessed potential underlying neuroendocrine mechanisms. GHB (20mg/kg) was tested in 16 healthy males, using a randomized, placebo-controlled, cross-over design. Subjective effects on mood were assessed by visual-analogue-scales and the GHB-Specific-Questionnaire. Prosocial behavior was examined by the Charity Donation Task, the Social Value Orientation test, and the Reciprocity Task. Reaction time, memory, empathy, and theory-of-mind were also tested. Blood plasma levels of GHB, oxytocin, testosterone, progesterone, dehydroepiandrosterone (DHEA), cortisol, aldosterone, and adrenocorticotropic-hormone (ACTH) were determined. GHB showed stimulating and sedating effects, and elicited euphoria, disinhibition, and enhanced vitality. In participants with low prosociality, the drug increased donations and prosocial money distributions. In contrast, social cognitive abilities such as emotion recognition, empathy, and theory-of-mind, and basal cognitive functions were not affected. GHB increased plasma progesterone, while oxytocin and testosterone, cortisol, aldosterone, DHEA, and ACTH levels remained unaffected. GHB has mood-enhancing and prosocial effects without affecting social hormones such as oxytocin and testosterone. These data suggest a potential involvement of GHB-/GABAB-receptors and progesterone in mood and prosocial behavior.
Resumo:
Previous restriction analysis of cloned equine DNA and genomic DNA of equine peripheral blood mononuclear cells had indicated the existence of one c epsilon, one c alpha and up to six c gamma genes in the haploid equine genome. The c epsilon and c alpha genes have been aligned on a 30 kb DNA fragment in the order 5' c epsilon-c alpha 3'. Here we describe the alignment of the equine c mu and c gamma genes by deletion analysis of one IgM, four IgG and two equine light chain expressing heterohybridomas. This analysis establishes the existence of six c gamma genes per haploid genome. The genomic alignment of the cH-genes is 5' c mu/(/) c gamma 1/(/) c gamma 2/(/) c gamma 3/(/) c gamma 4/(/) c gamma 5/(/) c gamma 6/(/) c epsilon-c alpha 3', naming the c gamma genes according to their position relative to c mu. For three of the c gamma genes the corresponding IgG isotypes could be identified as IgGa for c gamma 1, IgG(T) for c gamma 3 and IgGb for c gamma 4.
Resumo:
Interleukin 4 (IL-4) is expected to play a dominant role in the development of T helper (Th) 2 cells. Th2 immune responses with expression of relatively large amounts of interleukin 4 (IL-4) but little interferon gamma (IFN-gamma) are characteristic for chronic helminth infections. But no information is available about IL4 expression during early Fasciola hepatica (F. hepatica) infections in cattle. Therefore, we investigated F. hepatica specific IL-4 and IFN-gamma mRNA expression in peripheral blood mononuclear cells (PBMCs) from calves experimentally infected with F. hepatica. Cells were collected prior to infection and on post-inoculation days (PIDs) 10, 28 and 70. Interestingly, PBMCs responded to stimulation with F. hepatica secretory-excretory products (FhSEP) already on PID 10 and expressed high amounts of IL-4 but not of IFN-gamma mRNA suggesting that F. hepatica induced a Th2 biased early immune response which was not restricted to the site of infection. Later in infection IL-4 mRNA expression decreased whereas IFN-gamma mRNA expression increased slightly. Isolated lymph node cells (LNCs) stimulated with FhSEP and, even more importantly, non-stimulated LN tissue samples indicated highly polarized Th2 type immune responses in the draining (hepatic) lymph node, but not in the retropharyngeal lymph node. During preliminary experiments, two splice variants of bovine IL-4 mRNA, boIL-4delta2 and boIL-4delta3, were detected. Since a human IL-4delta2 was assumed to act as competitive inhibitor of IL-4, it was important to know whether expression of these splice variants of bovine IL-4 have a regulatory function during an immune response to infection with F. hepatica. Indeed, IL-4 splice variants could be detected in a number of samples, but quantitative analysis did not yield any clue to their function. Therefore, the significance of bovine IL-4 splice variants remains to be determined.
Resumo:
The acceptance of the fetal allograft by pregnant women and mice seems to be associated with a shift from a Th 1 dominated to a Th 2 dominated immune response to certain infectious agents. The goal of this study was to examine cytokine expression in peripheral blood mononuclear cells (PBMCs) from cattle immune to bovine viral diarrhea virus (BVDV) to determine whether pregnancy also has an influence on the type of immune response in this species. Forty-six heifers and cows between 14 months and 13 years of age were included in this study. Twenty-four were seropositive and 22 seronegative for BVDV. Eleven of the seropositive animals and 11 of the seronegative animals were in the eighth month of gestation, the remaining animals were virgin heifers. PBMC from these animals were analyzed for Interferon (IFN)-gamma and Interleukin (IL)-4 mRNA expression by real-time RT-PCR after stimulation with a non-cytopathic strain of BVDV. Additionally, an ELISA was performed to measure IFN-gamma in the supernatants of stimulated cell cultures. In BVDV seropositive animals, IFN-gamma mRNA levels were significantly higher than in BVDV seronegative animals and there was a significant positive correlation between the changes in IFN-gamma and IL-4 mRNA expression. There was, however, no significant difference in IFN-gamma and IL-4 mRNA levels between pregnant and non-pregnant animals. These results are inconsistent with BVDV inducing a Th1 or Th2 biased immune response. Furthermore, a shift in the cytokine pattern during bovine pregnancy was not evident.
Resumo:
Measurements of the natural background radiation have been made at numerous places throughout the world. Very little work in this field has been done in developing countries. In Mexico the natural radiation to which the population is exposed has not been assessed. This dissertation represents a pioneer study in this environmental area. The radiation exposure which occupants within buildings receive as a result of naturally occurring radionuclides present in construction materials is the principal focus.^ Data were collected between August 1979 and November 1980. Continuous monitoring was done with TLDs placed on site for periods of 3 to 6 months. The instrumentation used for "real-time" measurements was a portable NaI (Tl) scintillation detector. In addition, radiometric measurements were performed on construction materials commonly used in Mexican homes.^ Based on TLD readings taken within 75 dwellings, the typical indoor exposure for a resident of the study area is 9.2 (mu)Rh('-1). The average reading of the 152 indoor scintillometer surveys was 9.5 (mu)Rh('-1), the outdoor reading 7.5 (mu)Rh('-1). Results of one-way and multi-way analyses of the exposure data to determine the effect due to building materials type, geologic subsoil, age of dwelling, and elevation are also presented. The results of 152 indoor scintillometer surveys are described. ^
Resumo:
The γ-aminobutyric acid benzodiazepine (GABAA /BZDR) ionophore complex has been widely studied in the central nervous system (CNS) and it regulates Cl− ion movement across the plasma membrane. The complex has been found in the distal tubule and the thick ascending limb of the kidney. The goal of this study was to see if modulation of this complex by agonists or antagonists could affect the way Madin-Darby Canine Kidney (MDCK) cells responded to an oxidant stress induced by menadione. When compared to cells incubated with menadione alone, preincubation with lindane, a nonspecific GABAA antagonist, coincubation with bicuculline, a specific GABAA antagonist, and coincubation with FG7142, an inverse agonist for the BZDR, protected cells from menadione cytotoxicity. Preincubation of cells in media containing PK11195 had no effect on menadione cytotoxicity. Coincubation with flurazepam, a BZDR agonist, exacerbated menadione cytotoxicity. This suggests that modulation of the GABAA/BZDR ionophore complex within MDCK cells with agonists and antagonists can alter the cellular responsiveness to an oxidant-induced injury. These responses via agonists and antagonists may be due to alterations of Cl− ion influx during late stage necrotic cell death. ^
Resumo:
Retinoids, important modulators of squamous epithelial differentiation and proliferation, are effective in the treatment and prevention of squamous epithelial cancers, including squamous cell carcinomas (SCCs) of the skin. However, the mechanism is not well understood. Retinoids exert their effects primarily through two nuclear receptor families, retinoic acid receptors (RARα, β and γ) and retinoid X receptors (RXR(α, β and γ), ligand-dependent DNA-binding transcription factors that are members of the steroid hormone receptor superfamily. Retinoid receptor loss has been correlated with squamous epithelial malignancy. This has lead to the hypothesis that reduced RARγ expression and the resulting suppression of retinoid signaling contributes to squamous epithelial malignancy. To test this hypothesis, I attempted to reduce or abolish expression of RARγ, the predominant RAR in squamous epithelia, in several nontumorigenic human squamous epithelial cell lines. The most useful of these cell lines has been SqCCY1, the human head and neck squamous cell carcinoma cell line, along with several subclones stably transfected with RARγ sense and antisense expression constructs. By several criteria, we observed an overall suppression of squamous differentiation in RARγ sense transfectants and an enhancement in RARγ antisense transfectants, relative to parental SqCCY1 cells. We also observed that both sense and antisense cells could form tumors in athymic mice in vivo, while parental SqCCY1 cells could not. Although these results appear contradictory, several conclusions can be drawn. First, loss of RARγ contributes to squamous epithelial tumorigenesis. Second, overexpression of RARγ leads to tumor formation, suppressing differentiation and promoting proliferation, possibly due to a competitive inhibition of limiting concentrations of RXRα, a common heterodimeric partner for many nuclear receptors in addition to RARs, representing a mechanism for RARγ to modulate squamous epithelial homeostasis. The cause for tumorigenesis in the two conditions is likely due to different mechanisms/roles of RARγ in the cell, with the former as a retinoid signaling regulator; and the latter as an RXRα concentration modulator. Finally, High level of RARγ expression sensitizes cells to environmental RA, enhancing RARγ/RXRα-mediated RA signaling. Therefore, RA should be used in skin lesions with suppressed RARγ expression levels, not in skin lesions with overexpressed RARγ levels. ^
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^