875 resultados para Fringe pattern traces
Resumo:
Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco-tucos, comprises more than 50 known species over a range that extends from 12S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity-rest rhythms in a light-dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free-running periods always longer than 24h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free-running periods shorter than in DD, and 4/8 showed evidence of splitting. We conclude that under laboratory conditions, in wheel-running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24h LD cycles, predominantly by light-induced advances, and shows the same interindividual variable responses to constant light as reported in other non-subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.
Resumo:
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
Complex networks exist in many areas of science such as biology, neuroscience, engineering, and sociology. The growing development of this area has led to the introduction of several topological and dynamical measurements, which describe and quantify the structure of networks. Such characterization is essential not only for the modeling of real systems but also for the study of dynamic processes that may take place in them. However, it is not easy to use several measurements for the analysis of complex networks, due to the correlation between them and the difficulty of their visualization. To overcome these limitations, we propose an effective and comprehensive approach for the analysis of complex networks, which allows the visualization of several measurements in a few projections that contain the largest data variance and the classification of networks into three levels of detail, vertices, communities, and the global topology. We also demonstrate the efficiency and the universality of the proposed methods in a series of real-world networks in the three levels.
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.
Resumo:
A forum is a valuable tool to foster reflection in an in-depth discussion; however, it forces the course mediator to continually pay close attention in order to coordinate learners` activities. Moreover, monitoring a forum is time consuming given that it is impossible to know in advance when new messages are going to be posted. Additionally, a forum may be inactive for a long period and suddenly receive a burst of messages forcing forum mediators to frequently log on in order to know how the discussion is unfolding to intervene whenever it is necessary. Mediators also need to deal with a large amount of messages to identify off-pattern situations. This work presents a piece of action research that investigates how to improve coordination support in a forum using mobile devices for mitigating mediator`s difficulties in following the status of a forum. Based on summarized information extracted from message meta-data, mediators consult visual information summaries on PDAs and receive textual notifications in their mobile phone. This investigation revealed that mediators used the mobile-based coordination support to keep informed on what is taking place within the forum without the need to log on their desktop computer. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Statement of the problem: The performance of self-etch systems on enamel is controversial and seems to be dependent on the application technique and the enamel preparation. Purpose of the Study: To examine the effects of conditioning time and enamel surface preparation on bond strength and etching pattern of adhesive systems to enamel. Materials and Methods: Ninety-six teeth were divided into 16 conditions (N = 6) in function of enamel preparation and conditioning time for bond strength test. The adhesive systems OptiBond FL (Kerr, Orange, CA, USA), OptiBond SOLO Plus (Kerr), Clearfil SE Bond (Kuraray, Osaka, Japan), and Adper Prompt L-Pop (3M ESPE, St. Paul, MN, USA) were applied on unground or ground enamel following the manufacturers` directions or doubling the conditioning time. Cylinders of Filtek Flow (0.5-mm height) were applied to each bonded enamel surface using a Tygon tube (0.7 mm in diameter; Saint-Gobain Corp., Aurora, OH, USA). After storage (24 h/37 degrees C), the specimens were subjected to shear force (0.5 mm/min). The data were treated by a three-way analysis of variance and Tukey`s test (alpha = 0.05). The failure modes of the debonded interfaces and the etching pattern of adhesives were observed using scanning electron microscopy. Results: Only the main factor ""adhesive"" was statistically significant (p < 0.001). The lowest bond strength value was observed for OptiBond FL. The most defined etching pattern was observed for 35% phosphoric acid and for Adper Prompt L-Pop. Mixed failures were observed for all adhesives, but OptiBond FL showed cohesive failures in resin predominantly. Conclusions: The increase in the conditioning time as well as the enamel pretreatment did not provide an increase in the resin-enamel bond strength values for the studied adhesives. CLINICAL SIGNIFICANCE The surface enamel preparation and the conditioning time do not affect the performance of self-etch systems to enamel. (J Esthet Restor Dent 20:322-336, 2008)
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
Trypanosoma cruzi is highly diverse genetically and has been partitioned into six discrete typing units (DTUs), recently re-named T. cruzi I-VI. Although T. cruzi reproduces predominantly by binary division, accumulating evidence indicates that particular DTUs are the result of hybridization events. Two major scenarios for the origin of the hybrid lineages have been proposed. It is accepted widely that the most heterozygous TcV and TcVI DTUs are the result of genetic exchange between TcII and TcIII strains. On the other hand, the participation of a TcI parental in the current genome structure of these hybrid strains is a matter of debate. Here, sequences of the T. cruzi-specific 195-bp satellite DNA of TcI, TcII, Tat, TcV, and TcVI strains have been used for inferring network genealogies. The resulting genealogy showed a high degree of reticulation, which is consistent with more than one event of hybridization between the Tc DTUs. The data also strongly suggest that Tat is a hybrid with two distinct sets of satellite sequences, and that genetic exchange between TcI and TcII parentals occurred within the pedigree of the TcV and TcVI DTUs. Although satellite DNAs belong to the fast-evolving portion of eukaryotic genomes, in >100 satellite units of nine T. cruzi strains we found regions that display 100% identity. No DTU-specific consensus motifs were identified, inferring species-wide conservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
La(1-x)Ce(x)NiO(3) perovskites have been prepared, characterized by XRD. TPR and surface area and tested as catalysts for CO-PROx, with a feed of 2.5% CO, 5% O(2), 33% H(2) and N(2) to 100%. The samples exhibited an XRD pattern typical of the perovskite, with traces of NiO in the LaNiO(3) and La(0.95)Ce(0.05)NiO(3) samples, with some La(2)NiO(4) in the La(0.90)Ce(0.10)NiO(3) sample. All samples were active, but the perovskites with cerium showed good catalytic activity, demonstrating the promoter effect of cerium. The highest conversion of CO and H(2) was obtained with La(0.95)Ce(0.05)NiO(3), probably due to a synergy between Ni and Ce that enhanced O(2) mobility. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Spatiotemporal pattern formation in the electrocatalytic oxidation of sulfide on a platinum disk is investigated using electrochemical methods and a charge-coupled device (CCD) camera simultaneously. The system is characterized by different oscillatory regions spread over a wide potential range. An additional series resistor and a large electrode area facilitate observation of multiple regions of kinetic instabilities along the current/potential curve. Spatiotemporal patterns on the working electrode, such as fronts, pulses, spirals, twinkling eyes, labyrinthine stripes, and alternating synchronized deposition and dissolution, are observed at different operating conditions of series resistance and sweep rate.