986 resultados para Force Microscopy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monodispersed nanoparticles of Ag(I)-polymer hybrids have been prepared by using designed crown-ether-centred two-armed copolymers to chelate Ag+ ions at the interface of organic-aqueous solutions. The copolymer-Ag+ complex nanoparticles, as well as the reduced copolymer-Ag nanoparticles, have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). The particle size can be varied by simply changing the polymer concentration, the monomers, and/or the molecular weight. The copolymer-Ag(I) hybrids exhibit weak photoluminescence, which was substantially enhanced after the hybrids were reduced to copolymer-silver nanoparticles with UV irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The triblock copolymers, poly(styrene-b-isoprene-b-epsilon-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential- anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 mu m s(-1), respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL-(28) show the columns morphology formed by it's self-assembling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, we have successfully constructed flat-lying DNA monolayers on a mica surface (J. Phys. Chem. B 2006, 110, 10792-10798). In this work, the effects of various factors including bridge ions, DNA species, and developing temperature on the configuration of DNA monolayers have been investigated by atomic force microscopy (AFM) in detail. AFM results show that the species of bridge ions and developing temperature play a crucial role during the formation process. For example, the divalent cation Zn2+ resulted in many DNA chains stuck side by side in the monolayers due to the strong interactions between it and DNA's bases or the mica surface. Most DNA chain's conglutinations disappeared when the developing temperature was higher than 40 degrees C. Cd2+ and Ca2+ produced more compact DNA monolayers with some obvious aggregations, especially for the DNA monolayers constructed by using Ca2+ as the bridge ion. Co2+ produced well-ordered, flat-lying DNA monolayers similar to that of Mg2+. Furthermore, it was found that the flat-lying DNA monolayers could still form on a mica surface when plasmid DNA pBR 322 and linear DNA pBR 322/Pst I were used as the DNA source. Whereas, it was hard to form DNA monolayers on a (3-aminopropyl)triethoxysilane-mica surface because the strong interactions between DNA and substrate prevented the lateral movement of DNA molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several methods have been used for the measurement of the electronic decay constant (beta) of organic molecules. However, each of them has some disadvantages. For the first time, electrochemical impedance spectroscopy (EIS) was used to obtain the 18 value by measuring the tunneling resistance through alkanedithiols. The tunneling resistance through alkanedithiols increases exponentially with the molecular length in terms of the mechanism of coherent nonresonant tunneling. beta was 0.51 +/- 0.01 per carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-M-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was similar to 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-assembly processes of the rod-coil diblock oligomer thin film of tetra-aniline (TANI)-block-poly(L-lactide) (PLLA) with different film thicknesses induced in the coil-selective solvent of acetone vapor at room temperature were studied. The morphologies of the oligomer films were determined by the film thickness. For the thicker film (232 nm), the nonextinct concentric ring-banded textures could form. While for the thinner and appropriate film (about 6 nm), multistacked diamond-shaped appearances with the periodic thickness being about 8.5 nm(6-nm-thick extended PLLA chain and 2.5-nm-thick p-pi conjugating TANI bimolecular layer) formed. The possible formation models of those two regular morphologies were presented in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Pb(Zr0.52Ti0.48)O-3 was prepared from lead acetate, zirconium oxynitrate and titanium tetra-n-butoxide by a sol-gel method. It is found that both the crystallization temperature of precursor PZT and PZT product size were increased with increase of V(C3H8O2)/V(H2O) ratio in solution used. At V(C3H8O2)/V(H2O) = 4.47 the gel was formed moderately quick, and the nanocrystalline PZT with uniform granularity and low crystallizing temperature could be obtained. The diameter of the final nanocrystalline was ranged 60similar to70 nm as measured by atomic force microscopy (AFM). The crystallizing temperature of the precursor PZT was 443degreesC and the crystallization reaction was completed at 500degreesC by DTA and TG. The sol-gel reaction process was monitored by FT-IR and XRD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ring-banded spherulites in liquid crystalline poly(aryl ether ketone) (LC-PAEK) and poly(aryl ether ether ketone) (PEEK) blends with a higher content (>50%) of LC-PAEK are investigated by polarizing light microscopy (PLM) and atomic force microscopy (AFM) techniques. The results indicate that the light core and rings of the ring-banded spherulites under PLM are mainly composed of an LC-PAEK phase, while the dark rings consist of coexisting phases of PEEK and a small amount of LC-PAEK. The formation of the ring-banded spherulites is attributable to structural discontinuity caused by a rhythmic radial growth.