878 resultados para Food Production
Resumo:
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 A degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 A degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 A degrees C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increasing environmental concern about chemical surfactants triggers attention to microbial-derived surface-active compounds essentially due to their low toxicity and biodegradable nature. At present, biosurfactants are predominantly used in remediation of pollutants; however, they show potential applications in many sectors of food industry. Associated with emulsion forming and stabilization, antiadhesive and antimicrobial activities are some properties of biosurfactants, which could be explored in food processing and formulation. Potential applications of microbial surfactants in food area and the use of agroindustrial wastes as alternative substrates for their production are discussed.
Resumo:
Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins from starch by an intramolecular transglycosylation reaction. Cyclodextrins have been shown to have a number of applications in the food, cosmetic, pharmaceutical, and chemical industries. In the current study, the production of CGTase by Paenibacillus campinasensis strain H69-3 was examined in submerged and solid-state fermentations. P. campinasensis strain H69-3 was isolated from the soil, which grows at 45 C, and is a Gram-variable bacterium. Different substrate sources such as wheat bran, soybean bran, soybean extract, cassava solid residue, cassava starch, corn starch, and other combinations were used in the enzyme production. CGTase activity was highest in submerged fermentations with the greatest production observed at 48-72 h. The physical and chemical properties of CGTase were determined from the crude enzyme produced from submerged fermentations. The optimum temperature was found to be 70-75 degrees C, and the activity was stable at 55 degrees C for 1 h. The enzyme displayed two optimum pH values, 5.5 and 9.0 and was found to be stable between a pH of 4.5 and 11.0.
Resumo:
The xylanolytic system of Aspergillus versicolor is controlled by induction and carbon catabolite repression. Carboxymethylcellulose and wheat bran were the best inducers of xylanolytic activity. When the fungus was grown for 5 days on VOGEL's liquid medium with wheat bran, the optimal pH and temperature for xylanase production were 6.5 and 30 degrees C, respectively. Optimal conditions for the xylanolytic activity assay were at pH 6.0 and 55 degrees C. The half-life at 60 degrees C of the crude enzyme was 6.5 and 21 minutes, in the absence or presence of substrate, respectively.Xylan is the main hemicellulosic component of plant biomass being present in appreciable quantities in agricultural and several agroindustrial wastes. From the products of xylan enzymatic hydrolysis it is possible to obtain cell protein, fuels and other chemicals. Xylanases combined with cellulase could have applications in food processing. Cellulase-free xylanases can be also utilized for preparation of cellulose pulps and liberation of textile fibres (WOODWARD 1984; BIELY 1985, WONG et al. 1988). In view of the potential applications of xylanases, a study of these enzymes from various sources and their multiplicity is desirable.Among xylanolytic microorganisms, filamentous fungi have been more extensively studied and the genus Aspergillus has been shown to be an efficient producer of xylanases. Preliminary observations from our laboratory have demonstrated that a strain of Aspergillus versicolor, isolated from Brazilian soil, produced high xylanase and low cellulase levels, which is an interesting characteristic for some industrial applications. In this report we describe the production and some properties of xylanase obtained from this fungus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article updates the Brazilian database on food carotenoids. Emphasis is on carotenoids that have been demonstrated important to human health: alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein and zeaxanthin. The sampling and sample preparation strategies and the analytical methodology are presented. Possible sources of analytical errors, as well as the measures taken to avoid them, are discussed. Compositional variation due to such factors as variety/cultivar, stage of maturity, part of the plant utilized, climate or season and production technique are demonstrated. The effects of post-harvest handling, preparation, processing and storage of food on the carotenoid composition are also discussed. The importance of biodiversity is manifested by the variety of carotenoid sources and the higher levels of carotenoids in native, uncultivated or semi-cultivated fruits and vegetables in comparison to commercially produced crops. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)