941 resultados para Folkman Numbers
Resumo:
Venous leg ulceration is a serious condition affecting 1 – 3% of the population. Decline in the function of the calf muscle pump is correlated with venous ulceration. Many previous studies have reported an improvement in the function of the calf muscle pump, endurance of the calf muscle and increased range of ankle motion after structured exercise programs. However, there is a paucity of published research that assesses if these improvements result in an improvement in the healing rates of venous ulcers. The primary purpose of this pilot study was to establish the feasibility of a homebased progressive resistance exercise program and examine if there was any clinical significance or trend toward healing. The secondary aims were to examine the benefit of a home-based progressive resistance exercise program on calf muscle pump function and physical parameters. The methodology used was a randomised controlled trial where eleven participants were randomised into an intervention (n = 6) or control group (n = 5). Participants who were randomised to receive a 12-week home-based progressive resistance exercise program were instructed through weekly face-to-face consultations during their wound clinic appointment by the author. Control group participants received standard wound care and compression therapy. Changes in ulcer parameters were measured fortnightly at the clinic (number healed at 12 weeks, percentage change in area and pressure ulcer score healing score). An air plethysmography test was performed at baseline and following the 12 weeks of training to determine changes in calf muscle pump function. Functional measures included maximum number of heel raises (endurance), maximal isometric plantar flexion (strength) and range of ankle motion (ROAM); these tests were conducted at baseline, week 6 and week 12. The sample for the study was drawn from the Princess Alexandra Hospital in Brisbane, Australia. Participants with venous leg ulceration who met the inclusion criteria were recruited. The participants were screened via duplex scanning and ankle brachial pressure index (ABPI) to ensure they did not have any arterial complications. Participants were excluded if there was evidence of cellulitis. Demographic data were obtained from each participant and details regarding medical history, quality of life and geriatric depression scores were collected at baseline. Both the intervention and control group were required to complete a weekly exercise diary to monitor activity levels between groups. To test for the effect of the intervention over time, a repeated measures analysis of variance was conducted on the major outcome variables. Group (intervention versus control) was the between subject factor and time (baseline, week 6, week 12) was the within subject or repeated measures factor. Due to the small sample size, further tests were conducted to check the assumptions of the statistical test to be used. The results showed that Mauchly.s Test, the Sphericity assumptions of repeated measures for ANOVA were met. Further tests of homogeneity of variance assumptions also confirmed that this assumption was met. Data analysis was conducted using the software package SPSS for Windows Release 17.0. The pilot study proved feasible with all of the intervention (n=6) participants continuing with the resistance program for the 12 week duration and no deleterious effects noted. Clinical significance was observed in the intervention group with a 32% greater change in ulcer size (p= 0.26) than the control group, and a 10% (p = 0.74) greater difference between the numbers healed compared to the control group. Statistical significance was observed for the ejection fraction (p = 0.05), residual volume fraction (p = 0.04) and ROAM (p = 0.01), which all improved significantly in the intervention group over time. These results are encouraging, nevertheless, further investigations seem warranted to examine the effect exercise has on the healing rates of venous leg ulcers, with a multistudy site, larger sample size and longer follow up period.
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
The worldwide rise in numbers of refugees and asylum seekers suggests the need to examine the practices of those institutions charged with their resettlement in host countries. In this paper we investigate the role of one important institution – schooling – and its contribution to the successful resettlement of refugee children. We begin with an examination of forced migration and its links with globalisation, and the barriers to inclusion confronting refugees. A discussion of the educational challenges confronting individual refugee youth and schools is followed by case studies of four schools and the approaches they had developed to meet the needs of young people from a refugee background. Using our findings and other research, we outline a model of good practice in refugee education. We conclude by discussing how educational institutions might play a more active role in facilitating transitions to citizenship for refugee youth through an inclusive approach.
Resumo:
There are approximately 92 million new chlamydial infections of the genital tract in humans diagnosed each year, costing health care systems billions of dollars in treatment not only of acute infections, but also of associated inflammatory sequelae, such as pelvic inflammatory disease (PID) and ectopic pregnancy. These numbers are increasing at a steady rate and, due to the asymptomatic nature of infections, the incidence may be underestimated and the costs of treatment therefore higher. Over the previous few decades there has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections. The majority of this research has focused on females, due to the high rate of development of associated diseases, including PID, which can lead to ectopic pregnancy and infertility. In light of the increasing infection rates that have occurred despite the availability of antibiotics, and the asymptomatic nature of chlamydial infections, it is imperative that an efficacious vaccine that protects against infection and associated pathology be developed.
Resumo:
We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand’s concentration inequality for empirical processes.
Resumo:
The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.
Resumo:
In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.
Resumo:
It has been recognised in current literature that, in general, Australia’s population is ageing and that older people are increasingly choosing to continue to live in the community in their own homes for as long as possible. Such factors of social change are expected to lead to larger numbers of older people requiring community care services for longer periods. Despite this, there is little information available in the literature on the perceptions and experiences of older people regarding community-based care and support. This study explores the lived experience of a small group of older people living in South East Queensland who were receiving a level of care consistent with the Community Aged Care Package (CACP). It also sought to examine the impact and meaning of that care on the older person’s overall lifestyle, autonomy, and personal satisfaction. In-depth interviews were undertaken with these older people, and were analysed using Heidegger’s interpretive hermeneutical phenomenological approach. Shared narratives were then explored using Ricoeur’s narrative analysis framework. In order to sensitise the researcher to the unconscious or symbolic aspects of the care experience, Wolfensberger’s social role valorization theory (SRV) was also utilised during a third phase of analysis. Methodological rigour was strengthened within this study through the use of reflexivity and an in-depth member check discussion that was conducted with each participant. The interviews revealed there were significant differences in expectations, understanding, and perceptions between older people and their carers or service providers. The older person perceived care primarily in relational terms, and clearly preferred active participation in their care and a consistent relationship with a primary carer. Older people also sought to maintain their sense of autonomy, lifestyle, home environment, routines, and relationships, as closely as possible to those that existed prior to their requiring assistance. However, these expectations were not always supported by the care model. On the whole, service providers did not always understand what older people perceived was important within the care context. Carers seldom looked beyond the provision of assistance with specific daily tasks to consider the real impact of care on the older person. The study identified that older people reported a range of experiences when receiving care in their own homes. While some developed healthy and supportive connections with their carers, others experienced ageism, abuse, and exploitation. Unsatisfactory interactions at times resulted in a loss, to varying degrees, of their independence, their possessions, and their connectedness with others. There is therefore a need for service providers to pay more attention to the perceptions and self-perceived needs of older people, to avoid unintended or unnecessary negative impacts occurring within care provision. The study provides valuable information regarding the older person’s experience that will assist in supporting the further development and improvement of this model of care. It is proposed that these insights will enable CACPs to cater more closely to the actual needs and preferences of older people, and to avoid causing preventable harm to care recipients.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Resumo:
Transcutaneous immunization (TCI) involves the direct application of antigen plus adjuvant to skin, taking advantage of the large numbers of Langerhans cells and other resident skin dendritic cells, that process antigen then migrate to draining lymph nodes where immune responses are initiated. We have used this form of immunization to protect mice against genital tract and respiratory tract chlamydial infection. Protection was associated with local antibody responses in the vagina, uterus and lung as well as strong Th1 responses in the lymph nodes draining the reproductive tract and lungs respectively. In this study we show that topical application of GM-CSF to skin enhances the numbers and activation status of epidermal dendritic cells. Topical application of GM-CSF also increased the immune responses elicited by TCI. GM-CSF supplementation greatly increased cytokine (IFNgamma and IL-4) gene expression in lymph node and splenic cells compared to cells from animals immunized without GM-CSF. IgG responses in serum, uterine lavage and bronchoalveolar lavage and IgA responses in vaginal lavage were also increased by topical application of GM-CSF. The studies show that TCI induces protection against genital and respiratory tract chlamydial infections and that topical application of cytokines such as GM-CSF can enhance TCI-induced antibody and cell-mediated immunity.
Resumo:
Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.