939 resultados para Fluid overload
Resumo:
Thanks to the increasing slenderness and lightness allowed by new construction techniques and materials, the effects of wind on structures became in the last decades a research field of great importance in Civil Engineering. Thanks to the advances in computers power, the numerical simulation of wind tunnel tests has became a valid complementary activity and an attractive alternative for the future. Due to its flexibility, during the last years, the computational approach gained importance with respect to the traditional experimental investigation. However, still today, the computational approach to fluid-structure interaction problems is not as widely adopted as it could be expected. The main reason for this lies in the difficulties encountered in the numerical simulation of the turbulent, unsteady flow conditions generally encountered around bluff bodies. This thesis aims at providing a guide to the numerical simulation of bridge deck aerodynamic and aeroelastic behaviour describing in detail the simulation strategies and setting guidelines useful for the interpretation of the results.
Resumo:
The thesis deals with numerical algorithms for fluid-structure interaction problems with application in blood flow modelling. It starts with a short introduction on the mathematical description of incompressible viscous flow with non-Newtonian viscosity and a moving linear viscoelastic structure. The mathematical model consists of the generalized Navier-Stokes equation used for the description of fluid flow and the generalized string model for structure movement. The arbitrary Lagrangian-Eulerian approach is used in order to take into account moving computational domain. A part of the thesis is devoted to the discussion on the non-Newtonian behaviour of shear-thinning fluids, which is in our case blood, and derivation of two non-Newtonian models frequently used in the blood flow modelling. Further we give a brief overview on recent fluid-structure interaction schemes with discussion about the difficulties arising in numerical modelling of blood flow. Our main contribution lies in numerical and experimental study of a new loosely-coupled partitioned scheme called the kinematic splitting fluid-structure interaction algorithm. We present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Here, we assume both, the nonlinearity in convective as well is diffusive term. We analyse the convergence of proposed numerical scheme for a simplified fluid model of the Oseen type. Moreover, we present series of experiments including numerical error analysis, comparison of hemodynamic parameters for the Newtonian and non-Newtonian fluids and comparison of several physiologically relevant computational geometries in terms of wall displacement and wall shear stress. Numerical analysis and extensive experimental study for several standard geometries confirm reliability and accuracy of the proposed kinematic splitting scheme in order to approximate fluid-structure interaction problems.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
Negli ultimi anni, parallelamente allo sviluppo di calcolatori elettronici sempre più performanti, la fluidodinamica computazionale è diventata uno strumento di notevole utilità nell’analisi dei flussi e nello sviluppo di dispositivi medici. Quando impiegate nello studio di flussi di fluidi fisiologici, come il sangue, il vantaggio principale delle analisi CFD è che permettono di caratterizzare il comportamento fluidodinamico senza dover eseguire test in-vivo/in-vitro, consentendo quindi notevoli vantaggi in termini di tempo, denaro e rischio derivante da applicazioni mediche. Inoltre, simulazioni CFD offrono una precisa e dettagliata descrizione di ogni parametro di interesse permettendo, già in fase di progettazione, di prevedere quali modifiche al layout garantiranno maggiori vantaggi in termini di funzionalità. Il presente lavoro di tesi si è posto l’obiettivo di valutare, tramite simulazioni CFD, le performances fluidodinamiche del comparto sangue “camera venosa” di un dispositivo medico monouso Bellco impiegato nella realizzazione di trattamenti di emodialisi. Dopo una panoramica del contesto, è presentata una breve descrizione della disfunzione renale e dei trattamenti sostitutivi. Notevole impegno è stato in seguito rivolto allo studio della letteratura scientifica in modo da definire un modello reologico per il fluido non-Newtoniano preso in considerazione e determinarne i parametri caratteristici. Il terzo capitolo presenta lo stato dell’arte delle apparecchiature Bellco, rivolgendosi con particolare attenzione al componente “cassette” del dispositivo monouso. L’analisi fluidodinamica del compartimento “camera venosa” della cassette, che sarà presa in considerazione nei capitoli quinto e sesto, si inserisce nell’ambito della riprogettazione del dispositivo attualmente in commercio: il quarto capitolo si incentra sul suo nuovo design, ponendo specifico interesse sul layout della camera venosa di nuova generazione. Per lo studio dei flussi che si sviluppano internamente ad essa ci si è avvalsi del modulo CFD del software COMSOL multiphysics® (versione 5.0); la definizione del modello implementato e della tipologia di studio effettuato sono presi in considerazione nel quinto capitolo. Le problematiche di maggior impatto nella realizzazione di un trattamento di emodialisi sono l’emolisi e la coagulazione del sangue. Nell'evenienza che si verifichino massivamente occorre infatti interrompere il trattamento con notevoli disagi per il paziente, per questo devono essere evitate. Nel sesto capitolo i risultati ottenuti sono stati esaminati rivolgendo particolare attenzione alla verifica dell’assenza di fenomeni che possano portare alle problematiche suddette.
Resumo:
Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.
Resumo:
Rapid water ingestion improves orthostatic intolerance (OI) in multiple system atrophy (MSA) and postural tachycardia syndrome (PoTS). We compared haemodynamic changes after water and clear soup intake, the latter being a common treatment strategy for OI in daily practice.
Resumo:
Lesion formation on root surfaces of human posterior teeth was studied in acetate/lactate buffers with a background electrolyte composition based on plaque fluid analyses. Lesion depth after 28 days at 37 degrees C was measured in relation to: the presence or absence of cementum; the concentration of undissociated buffer; the presence or absence of magnesium ions at plaque fluid concentration. Each factor was evaluated at several values of -log(ion activity product for hydroxyapatite): pI(HA). Solutions were formulated to minimize variation in pH, which varied by < or =0.03 for a given comparison (individual pI(HA)) and by 0.42-0.82 over the range of pI(HA) within experiments. Lesions on surfaces from which cementum had been ground were significantly deeper than on intact surfaces, but this is considered to be due to subsurface mechanical damage and not to a solubility difference. Neither the concentration of undissociated buffer nor the presence of magnesium ions significantly affected lesion depth. Lesion depth was strongly influenced by the correlated variations in pI(HA) and pH. At pI(HA) 54 and 55, only extremely shallow lesions formed. From pI(HA) 56, lesion depth increased with increasing pI(HA). The results confirm that the solubility of the mineral of root tissues is higher than that of hydroxyapatite, but indicate that it is probably lower than suggested by Hoppenbrouwers et al. [Arch Oral Biol 1987;32:319-322]. For calcium concentrations of 3-12 mM, the critical pH for root tissue mineral was calculated as 5.22-5.66 assuming solubility equivalent to pI(HA) 54 and 5.08-5.51 assuming pI(HA) 55.
Resumo:
In patients with cirrhosis, bacterial DNA has been found in ascites reflecting bacterial translocation. However, the clinical relevance of this finding is ill-defined especially compared with the standard diagnostics for detection of spontaneous bacterial peritonitis (SBP). Furthermore, other DNA tests have not been sufficiently evaluated.
Resumo:
Pulmonary edema is a problem of major clinical importance resulting from a persistent imbalance between forces that drive water into the airspace of the lung and the biological mechanisms for its removal. Here, we will first review the fundamental mechanisms implicated in the regulation of lung fluid homeostasis, namely, the Starling forces and the respiratory transepithelial sodium transport. Second, we will discuss the contribution of hypoxia to the perturbation of this fine balance and the role of such perturbations in the development of high-altitude pulmonary edema, a disease characterized by a very high morbidity and mortality. Finally, we will review possible interventions aimed to maintain/restore lung fluid homeostasis and their importance for the prevention/treatment of pulmonary edema.
Resumo:
For the prevention of postoperative CSF fistula a better understanding of origins and risk factors is necessary.
Resumo:
Antibiotic-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and temporal kinetics of cerebrospinal fluid (CSF) inflammation were assessed in an infant rat pneumococcal meningitis model for the nonbacteriolytic antibiotic daptomycin versus ceftriaxone. Daptomycin led to lower CSF concentrations of interleukin 1beta (IL-1beta), IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1 alpha (MIP-1alpha) (P < 0.05). In experimental pneumococcal meningitis, daptomycin treatment resulted in more rapid bacterial killing, lower CSF inflammation, and less brain damage than ceftriaxone treatment.
Resumo:
Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied.
Resumo:
The analysis of samplings from periodontal pockets is important in the diagnosis and therapy of periodontitis. In this study, three different sampling techniques were compared to determine whether one method yielded samples suitable for the reproducible and simultaneous determination of bacterial load, cytokines, neutrophil elastase, and arginine-specific gingipains (Rgps). Rgps are an important virulence factor of Porphyromonas gingivalis, the exact concentration of which in gingival crevicular fluid (GCF) has not been quantified.
Resumo:
Vasopressors, such as norepinephrine, are frequently used to treat perioperative hypotension. Increasing perfusion pressure with norepinephrine may increase blood flow in regions at risk. However, the resulting vasoconstriction could deteriorate microcirculatory blood flow in the intestinal tract and kidneys. This animal study was designed to investigate the effects of treating perioperative hypotension with norepinephrine during laparotomy with low fluid volume replacement.