795 resultados para Flavonoids.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O rápido crescimento da procura e na produção de Physalis está associado às suas características nutracêuticas e medicinais, por estarem associadas ao bemestar e à saúde. O reconhecimento e o conceito da qualidade dos frutos é cada vezmais importante, abrangendo a aparência do produto, o aroma, a textura e o valor nutricional. Com a realização deste trabalho pretendeu-se avaliar as propriedades físicoquímicas das bagas de physalis, bem como os conteúdos em compostos bioativos com potenciais benefícios para a saúde humana. Neste trabalho foi avaliada uma variedade de physalis (Physalis peruviana L.), sendo os frutos provenientes de uma exploração localizada na região Norte-Centro de Portugal. Foram realizadas análises físicas às 'physalis' frescas, tendo sido determinados o calibre, a cor e a textura. Na análise química, realizaram-se as determinações, da humidade, da fibra bruta, dos açúcares totais e redutores, da acidez total titulável, do teor de sólidos solúveis totais, do ácido ascórbico, dos carotenóides, dos compostos fenólicos totais, dos orto-difenóis e dos flavonóides. Foi ainda determinada a atividade antioxidante pelos métodos ABTS e DPPH e os extratos submetidos a condições simulantes do trato digestivo. As physalis em estudo apresentaram, em média um diâmetro de 1,69 cm e uma massa de 2,77 g. Relativamente à cor, as bagas apresentaram-se claras, (L*=65,72), e com uma tendência para a cor vermelha (a*=16,69), e uma forte intensidade amarela (b*=58,11). No que diz respeito à textura, a firmeza foi de 2,40 N e a elasticidade foi de 2,94 mm. Quanto à caracterização química foram encontrados os seguintes resultados: 83,02% de água, 4,61% de fibra, 8,79% de açúcares totais, 1,25% de acidez total, expressa em ácido cítrico. A amostra continha ainda 5,95 μg/g de carotenoides 26,7 mg de ácido ascórbico por 100 g. Os valores de fenóis totais (42,74 e 59,95 mg EAG/100 g) e de atividade antioxidante determinada pelo método DPPH (7,73 e 9,61 μmol TE/g), e pelo método ABTS (12,28 e 13,71 μmol TE/g) variam de acordo com as condições de extração. Verificou-se ainda uma correlação forte entre os dois métodos. No que diz respeito às condições in vitro de simulação das condições do trato digestivo, verificou-se um decréscimo ao longo do trato digestivo tanto no teor em compostos fenólicos bem como na atividade antioxidante. Em termos globais houve uma retenção de 43% dos compostos fenólicos totais e 26% da atividade antioxidante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado em Ciências Farmacêuticas)—Universidade de Brasília, Faculdade de Ciências da Saúde, Pós-graduação em Ciências Farmacêuticas, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O maracujá-roxo é um fruto tropical que tem ganho destaque devido ao seu valor nutricional, organolético e às emergentes descobertas acerca das suas propriedades farmacêuticas e antioxidantes. Durante o processo de maturação decorrem várias reações de ordem física e química, e no intuito de enriquecer o conhecimento acerca de como a composição química e as propriedades do maracujá-roxo evoluem ao longo da maturação, este trabalho consistiu na caracterização física do fruto inteiro e na caracterização química geral das sementes, casca e polpa em frutos separados em cinco graus de maturação diferentes (G1 a G5). Foi também avaliada a atividade antioxidante (atividade antiradicalar e poder redutor), e o teor em compostos fenólicos (fenóis totais, derivados do ácido hidroxicinâmico e flavonóis) das diferentes matrizes que compõem o fruto ao longo da maturação. A partir dos resultados obtidos verificou-se na casca que o teor em cinza bruta aumenta essencialmente entre G1 e G2 enquanto se verificou uma diminuição da proteína. Em relação à semente, o teor em cinza bruta aumenta gradualmente, e o teor em proteína aumenta de G1 para G2, estabilizando posteriormente nos 8% (base seca). O teor em gordura aumenta gradualmente ao longo da maturação, verificando-se um maior acumulo entre G1 e G2 (9,9 e 19,1% respetivamente). No que respeita à polpa, há uma diminuição nos teores de cinza e proteína e aumento dos sólidos solúveis totais.Verificou-se um aumento ligeiro do pH ao longo da maturação (entre 2,8 a 3,1) e uma diminuição da acidez (entre 12,1 e 6,7 g de ácido cítrico 100 mL-1). Constatou-se que os açúcares predominantes na polpa foram a sacarose, frutose e glucose. Quanto aos ácidos orgánicos, o ácido cítrico foi o maioritário em todos os graus de maturação e teores mais baixos foram quantificados para os ácidos málico e ascórbico. Entre as diferentes partes do fruto estudadas, as cascas foram a matriz mais antioxidante, aumentando o seu potencial bioativo durante a maturação. As sementes apresentaram valores mais elevados de fenóis totais, derivados do ácido hidroxicinâmico e flavonóis. Foi verificado que a atividade antioxidante esteve correlacionada com os valores de fenóis totais presentes nas diferentes partes do fruto ao longo da maturação. De acordo com o conhecimento dos autores, este é o primeiro estudo que toma em consideração as alterações sofridas pelas diferentes partes do maracujá-roxo produzido em Portugal, ao longo da maturação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic additives used in a wide variety of food products have been associated to some toxic effects. This conducted to an increasing interest of consumers for natural additives, including food preservers [1]. Many aromatic herbs have been used to prepare bioactive extracts with benefits to the consumer's health. Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are examples of popular herbs rich in phenolic compounds with documented antioxidant and antimicrobial properties [2,3]. The present work confirms the antioxidant (DPPH scavenging activity, reducing power and lipid peroxidation inhibition) and antimicrobial (against bacteria such as Bacillus cereus and Salmonella Typhimurium and fungi such as Aspergillus niger, A. versicolor and PenicilliumfimicuJosum) activities of fennel and chamomile extracts, obtained by decoction. The chemical characterization of the extracts, performed by HPLC-DAD-ESIIMS, revealed the presence of five flavonoids (mainly qercetin-3-0- glucoside) and twelve phenolic acids (mainly 5-0-caffeolyquinic acid) for fennel extract and the presence of nine flavonoids (mainly luteolin-0-glucuronide) and ten phenolic acids (mainly di-caffeoyl-2,7- anhydro-3-deoxy-2-octulopyranosonic acid) for chamomile extract. Due to their high antioxidant and antimicrobial activities, both extracts were then incorporated (at DPPH scavenging activity EC25 value: 0.35 mg/mL and 0.165 mg/mL for fennel and chamomile, respectively) in cottage cheeses (prepared by Queijos Casa Matias Lda) as natural additives with two objectives: to increase the shelf-life of the cottage cheeses and to provide bioactive properties to the final products. The results showed that the use of these natural extracts did not alter significantly the nutritional characteristics of the cottage cheese in comparison with control samples (cottage cheese without extracts), but improved its antioxidant potential (more evident in the samples with chamomile extract). After 14 days of storage, only the control samples showed signs of degradation. Overall, the present study highlights the preservation potential of fennel and chamomile extracts in cottage cheeses, improving also their bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buckler sorrel (Rumex induratus Boiss. & Reut.) is an underutilized leafy vegetable with peculiar sensory properties and potential as a gourmet food. In the food industry, different packaging methods have been used for shelf-life extension, but it is important to know how the quality of minimally processed vegetable is affected by these treatments. Recently, nitrogen and argon have been used for food packaging. Nitrogen is low soluble in water and other food constituents and does not support the growth of aerobic microbes. In turn, argon is biochemically active and appears to interfere with enzymatic oxygen receptor sites. In this study, modified atmospheres enriched with nitrogen and argon were evaluated for shelf-life extension of buckler sorrel leaves. Wild samples were gathered in Bragança, Portugal, considering local consumers’ sites and criteria. Healthy and undamaged leaves were selected, rinsed in tap water, and a portion was immediately analyzed (non-stored control). The remaining fresh material was packaged in polyethylene bags under nitrogen- and argon-enriched atmospheres and a conventional control atmosphere (air). All packaged samples were stored at 4 ºC for 12 days and then analyzed. The headspace gas composition was monitored during storage. Different quality attributes were evaluated, including visual (colour), nutritional (macronutrients, individual sugars and fatty acids) and bioactive (hydrophilic and lipophilic molecules and antioxidant properties) parameters. Different statistical tools were used; the one-way analysis of variance (ANO VA) was applied for analyse the differences among treatments and a linear discriminant analysis (LDA ) was used to evaluate the effects on the overall postharvest quality. The argon-enriched atmosphere better prevent the samples yellowing. The proximate composition did not change significantly during storage. Samples in control atmosphere revealed higher protein and ash contents and lower levels of lipids. The non-stored control samples presented the higher amounts of fructose, glucose and trehalose. The storage time increased the palmitic acid levels and decreased the content in α-linolenic and linoleic acids. The γ- e δ-tocopherols were higher after the 12 days of cold storage. Probably, the synthesis of these lipophilic compounds was a plant strategy to fight against the abiotic stress induced by storage. Higher levels of total phenolics and flavonoids and increased reducing power and β-carotene bleaching inhibition capacity were also found in the stored control samples. Once again, this result may be attributed to the intrinsic plant-protection mechanisms. Overall, the argon atmosphere was more suitable for quality preservation and shelf-life extension of buckler sorrel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opportunistic fungal infections, namely involving Candida species, constitute a hot topic for scientific researchers. The present wor1( aims to access antifungal potential of plant-derived phenolic extrac:ls against planktonic cells and biofilms of Candida species. Eucalyptvs globulus Labill. (blue gum), Glycyrrhiza glabra L. (licorice), Juglans regia L. (walnut) and Salvia officina/is L. (sage) evidenced to be the most effective Candida growth inhibitors, using disc diffusion assay. Minmal inhibitory (MIC) and minimal fungicidal (MFC) concentrations, and chemical composition of extracts by using HPLC-DAO-ESVMS were also determined. Blue gum and walnut mainly exerted fungistatic potential, while sage exerted an interesting anti-Candida potential. However, the most prominent candidacidal potential was observed to licorice extract, being achieved the lowest MIC and MFC values. The candidacidal potential of these phenolic extracts was mainly attributed to their high abundance in flavonoids, mainly flavones: luteolin (sage) and apigen~ derivatives (licorice), and flavanones: liQuiritin derivatives (licorice). In order to deepen the knowledge on the most effective extract. its abiity to inhibit biofilm formation was evaluated. Overall, a double concentration of MFC value was necessary to achieve similar results in biofims. Row cytometry assays were also carried out, and the obtained results revealed that primary lesion of cellular membrane appear to be most relevant mode of action. Thus, plant derived phenolic compounds evidence a promising potential to combat Candida species biofilms, both individually or combined with conventional therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La muqueuse intestinale est exposée à des agents oxydants provenant de l’ingestion d’aliments modifiés, de cellules immuno-inflammatoires et de la flore intestinale. Une diète élevée en fruits et légumes peut diminuer le stress oxydant (SOx) ainsi que l’inflammation via plusieurs mécanismes. Ces effets bénéfiques peuvent être attribuables à leur contenu élevé en polyphénols. La première étude de mon doctorat consistait à tester l’hypothèse que les polyphénols extraits de pelures de pomme (DAPP) pouvaient diminuer le stress oxydant et l'inflammation impliqués dans les maladies inflammatoires de l'intestin (MII). Nous avons caractérisé les polyphénols des DAPP par spectrométrie de masse (LC-MS) et examiné leur potentiel antioxydant et anti-inflammatoire au niveau des cellules intestinales. L’identification des structures chimiques des polyphénols a été effectuée par LC-MS. Le SOx a été induit par l’ajout du complexe fer/ascorbate (Fe/Asc, 200 µM/2 mM) et l’inflammation par la lipopolysaccharide (LPS, 200µg/mL) à des cellules intestinales Caco-2/15 pré-incubées avec les DAPP (250 µg/mL). L’effet du SOx est déterminé par le dosage du malondialdéhyde (MDA), de la composition des acides gras polyinsaturés et de l’activité des enzymes antioxydantes endogènes (SOD et GPx). L’impact des DAPP sur l’inflammation a été testé par l’analyse de l’expression des marqueurs inflammatoires: cyclooxygénase-2 (COX-2), le facteur de nécrose tumorale alpha (TNF-a et l’interleukine-6 (IL-6) et les facteurs de transcription NF-KB, Nrf-2 et PGC1α par immunobuvardage. Nos données ont montré que les flavonols et les flavan-3-ols constituent les composés polyphénoliques majoritaires des DAPP. L’ajout de Fer2+/Asc a provoqué une augmentation de la peroxidation lipidique comparativement aux cellules contrôles, un appauvrissement des acides gras polyinsaturés n-3 et n-6, et une modulation des enzymes antioxydantes, se traduisant par une augmentation de l’activité de la SOD et une diminution de la GPx. En contrepartie, les DAPP ont exhibé leur potentiel à corriger la plupart des perturbations, y compris l’expression protéique anormalement élevée du COX-2 et la production de la prostaglandine E2 (PGE2), ainsi que l’inflammation telle que réflétée par les facteurs NF-κB, TNF-α et IL-6. Par ailleurs, les mécanismes sous-jacents à ces changements bénéfiques des DAPP ont fait intervenir les facteurs de transcription antioxydants (Nrf-2, PGC1α). Vraisemblablement, cette première étude a permis de démontrer la capacité des DAPP à amoindrir le SOx et à réduire l’inflammation, deux processus étroitement impliqués dans les MII. Dans la deuxième étape de mon doctorat, nous avons voulu comparer les résultats de DAPP à ceux des polyphénols dérivant de la canneberge qui est considérée par la communauté scientifique comme le fruit ayant le plus fort potentiel antioxydant. À cette fin, nous avons caractérisé l’effet des composés polyphénoliques de la canneberge (CPC) sur le SOx, la défense antioxydante et l’inflammation au niveau intestinal tout en définissant leur métabolisme intraluminal. Les différents CPC ont été séparés selon leur poids moléculaire par chromatographie et leurs structures chimiques ont été identifiées par LC-MS. Suite à une pré-incubation des cellules Caco-2/15 avec les extraits CPC (250 µg/mL), le Fe/Asc et la LPS ont été administrés comme inducteurs du SOx et de l’inflammation, respectivement. La caractérisation globale des CPC a révélé que les acides phénoliques composaient majoritairement l’extrait de canneberge de petit poids moléculaire (LC) alors que les flavonoïdes et les procyanidines dimériques/trimériques représentaient l’extrait de poids moléculaire moyen (MC) tout en laissant les procyanidines oligo et polymériques à l’extrait de haut poids moléculaire (HC). Les CPC ont permis de restaurer la plupart des perturbations engendrées dans les Caco-2/15 par le Fe/Asc et le LPS. Les CPC exhibaient le potentiel d’abaisser les niveaux de MDA, de corriger la composition des acides gras polyinsaturés n-3 et n-6, d’augmenter l’activité des enzymes antioxydantes (SOD, GPx et CAT) et d’élever l’expression de Nrf2 et PGC1α. En outre, les CPC pouvaient aussi réduire les niveaux élevés des protéines inflammatoires COX-2, TNF-α et IL-6 ainsi que la production des PGE2 par un mécanisme impliquant le NF-κB. Au niveau mitochondrial, les procyanidines oligomériques ont réussi à corriger les dysfonctions reliées à la production d’énergie (ATP), l’apoptose (Bcl-2, Cyt C et AIF) et le statut des facteurs de transcription mitochondriaux (mtTFA, mtTFB1, mtTFB2). Dans le but de bien comprendre les mécanismes d’action des CPC, nous avons défini par LC-MS les composés polyphénoliques qui ont été transportés ou absorbés par l’entérocyte. Nos analyses soulignent le transport (i) des acides cinnamiques et benzoïques (LC); (ii) la quercétine glycosylée et conjuguée et les procyanidines dimériques de type A (MC); et (iii) l’épicatéchine et les procyanidines oligomériques (HC). Les processus de métabolisation (méthylation, glucuronidation et sulfatation) au niveau de l’entérocyte ont probablement permis le transport de ces CPC surtout sous leur forme conjuguée. Les procyanidines oligomériques ayant un degré de polymérisation supérieur à 2 (HC) ont semblé adhérer aux cellules Caco-2/15. L’épicatéchine suivi par les procyanidines dimériques de type A ont été trouvés majoritaires au niveau des mitochondries. Même si nous ignorons encore l’action biologique de chaque composé polyphénolique, nous pouvons suggérer que leurs effets combinatoires exercent des fonctions antioxydantes, anti-inflammatoires et mitochondriales dans le modèle intestinal Caco-2/15. Dans une troisième étape, nous avons procédé à l’évaluation des aspects préventifs et thérapeutique des DAPP tout en sondant les mécanismes sous-jacents dans une étude préclinique. À cette fin, nous avons exploité le modèle de souris avec colite expérimentale provoquée par le Dextran Sulfate de Sodium (DSS). L’induction de l’inflammation intestinale chez la souris C57BL6 a été effectuée par l’administration orale de DSS à 2.5% pendant 10 jours. Des doses physiologiques et supra-physiologiques de DAPP (200 et 400 mg/kg/j, respectivement) ont été administrées par gavage pendant 10 jours pré- et post-DSS. L’inflammation par le DSS a provoqué une perte de poids, un raccourcissement du côlon, le décollement dystrophique de l’épithélium, l’exulcération et les infiltrations de cellules mono et polynucléaires au niveau du côlon. De plus, le DSS a induit une augmentation de la peroxidation lipidique, une régulation à la baisse des enzymes antioxydantes, une expression protéique à la hausse de la myéloperoxidase (MPO), du COX-2 et de la production des PGE2. Par ailleurs, les DAPP ont permis de corriger ou du moins d’alléger la plupart de ces anomalies en situation préventive ou thérapeutique, en plus d’abaisser l’expression protéique de NF-κB et des cytokines inflammatoires (TNF-a et l’IL-6) tout en stimulant les facteurs de transcription antioxydants (Nrf-2, PGC1α). Conséquemment, les polyphénols des DAPP ont exhibé leur puissant pouvoir antioxydant et anti-inflammatoire au niveau intestinal dans un modèle in vivo. Leurs actions sont associées à la régulation des voies de signalisation cellulaire et des changements dans la composition du microbiote. Ces trois projets de recherche permettent d’envisager l’évaluation des effets préventifs et thérapeutiques des DAPP cliniquement chez les patients avec des désordres inflammatoires de l’intestin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn. (milk thistle) are medicinal plants native to the Mediterranean Basin that belong to the Asteraceae family. The flowers and leaves of milk thistle are used in the treatment of liver, spleen and gallbladder disorders [1] and artichoke leaves are used for their cholagogue, choleretic and choliokinetic actions, and also for treatment of dyspepsia and as antidiabetics [2]. The beneficial properties of medicinal plants can be related to their large diversity of phytochemicals, among which phenolic compounds are outstanding. Thereby, the aim of the present work was to obtain and compare the phenolic profiles of artichoke and milk thistle aqueous (prepared by infusion) and hydromethanolic (maceration in methanol: water 80:20, v/v) extracts, using HPLC-DAD-ESI/MS. The aqueous extract of artichoke presented higher concentration in total phenolic compounds (15.29 mg/g extract) than the hydromethanolic extract (4.37 mg/g) with slight differences between the respective profiles; the major flavonoid found in the aqueous and hydromethanolic extract was luteolin-7-O-glucuronide (5.64 and 0.70 mg/g, respectively), followed by luteolin-7-O-glucoside (2.88 and 0.49 mg/g, respectively). Monocaffeoylquinic acid derivatives were only present in the hydromethanolic extract, being 5-O-caffeoylquinic acid (0.49 mg/g) the most abundant one, while dicaffeoylquinic acid derivatives were mostly identified in the aqueous extract; 1,3-O-dicaffeoylquinic acid was the most abundant one in both extracts (0.90 and 0.37 mg/g in the aqueous and hydromethanolic extract, respectively). Regarding to milk thistle preparations, similar phenolic profiles were observed, with only quantitative differences between them. The aqueous extract revealed a higher phenolic compounds concentration (5.57 mg/g) than the hydromethanolic extract (3.56 mg/g), with apigenin-7-O-glucuronide as the major compound in both preparations (3.14 mg/g in the aqueous extract, and 0.58 mg/g in the hydromethanolic extract). Total flavonoids were higher in the aqueous extract (4.66 mg/g), with apigenin-7-Oglucuronide, luteolin-7-O-glucuronide (1.17 mg/g), and apigenin-O-deoxyhexosylglucuronide (0.36 mg/g) as the main constituents. The phenolic acids found in the hydromethanolic extract (total content 1.65 mg/g), included 5-O-caffeolyquinic and protocatechuic acids (0.56 and 0.44 mg/g, respectively). Besides these phenolic acids, the hydromethanolic extract also revealed high levels of luteolin-7-O-glucuronide (0.58 mg/g). Overall, aqueous extracts presented higher phenolic contents than their hydromethanolic extracts in both species, which could be related with the heat treatment to which infusions were subjected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum L.) is the second most important vegetable crop worldwide and a key component in the so-called “Mediterranean diet”. In the Northeastern region of Portugal, local populations still prefer to consume traditional tomato varieties which they find very tasty and healthy, as they are grown using extensive farming techniques. A previous study of our research team described the nutritional value of the round (batateiro), long (comprido), heart (coração) and yellow (amarelo) tomato varieties [1], but the phenolic profile was unknown until now. Thus, the objective of this study was to characterize the phenolic profiles of these four tomato farmers’ varieties by using HPLC-DAD-ESI/MS and evaluate its antioxidant capacity through four in vitro assays based on different reaction mechanisms. A cis p-coumaric acid derivative was the most abundant compound in yellow and round tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long and heart varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds, including phenolic acids and flavonoids, but the lowest antioxidant activity. In turn, the round tomato gave the best results in all the antioxidant activity assays. This study demonstrated that these tomato farmers’ varieties are a source of phenolic compounds, mainly phenolic acid derivatives [2], and possess high antioxidant capacity [1]; being thus key elements in the diet to prevent chronic degenerative diseases associated to oxidative stress, such as cancer and coronary artery disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytochemical analyses as well as antimicrobial and antioxidant activities of the extracts of C. sumatrensis aerial parts were investigated in this study. METHODS: The aerial parts of C. sumatrensis were air dried, weighed and exhaustively extracted with hexane, ethyl acetate and methanol successively. The crude extracts were screened for metabolites. These extracts of the plant were evaluated for antimicrobial and antioxidant activities using agar diffusion and DPPH method respectively. The extracts were also analysed using Gas chromatography – Mass spectrometry, and the chromatogram coupled with mass spectra of the compounds were matched with a standard library. RESULTS: Preliminary phytochemical investigation of crude n-hexane, ethyl acetate and methanol extracts of the aerial parts of Conyza sumatrensis revealed the presence of anthraquinones, flavonoids, terpenoids, phenolics, tannin, glycosides and carbohydrate. All the crude extracts gave a clear zone of inhibition against the growth of the test bacteria ( Staphylococcus aureus , Escherichia coli , Bacillus subtilis , Pseudomona aeruginosa, Salmonella typhi , Klebsiellae pneumonae ) at moderate to high concentrations, as well as test fungi ( Candida albicans , Aspergillus niger , penicillium notatum and Rhizopus stolonifer ) at high concentration. Methanolic extract exhibited significant radical scavenging property with IC50 of 17.08 μg/mL while n-hexane and ethyl acetate extracts showed no significant antioxidant activity. GC-MS of N-hexane extract showed a total number of eleven chemical constituents with α-Farnesene and spathulenol being the most abundance compounds constituting 20.27 and 22.28% of the extract respectively. Ethyl acetate extract revealed thirteen compounds with two most abundant compounds, cis-β-farnesene (16.64 %) and cis-pinane (21.09 %). While methanolic extract affords seventeen compounds with Ephytol being the most abundant compound (19.36 %).