967 resultados para Flail space model
Resumo:
Using the published KTeV samples of K(L) -> pi(+/-)e(-/+)nu and K(L) -> pi(+/-)mu(-/+)nu decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parametrization. We obtain phase-space integrals I(K)(e) = 0.15446 +/- 0.00025 and I(K)(mu) = 0.10219 +/- 0.00025. For the scalar form factor parametrization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best-fit results in InC = 0.1915 +/- 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase-space integrals and C are then used to make tests of the standard model. Finally, we compare our results with lattice QCD calculations of F(K)/F(pi) and f(+)(0).
Resumo:
We describe a new exact relation for large N(c) QCD for the long-distance behavior of baryon form factors in the chiral limit. This model-independent relation is used to test the consistency of the structure of several baryon models. All 4D semiclassical chiral soliton models satisfy the relation, as does the Pomarol-Wulzer holographic model of baryons as 5D Skyrmions. However, remarkably, we find that the holographic model treating baryons as instantons in the Sakai-Sugimoto model does not satisfy the relation.
Resumo:
We use the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions to fit recent HERA data on F(L) and F(2)(c)(F(2)(b)). Having checked that this model gives a good description of the data, we use it to predict F(L) and F(2)(c) to be measured in a future electron-ion collider. The results are similar to those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates for both heavy-ion and electron-ion collisions.
Resumo:
We present a new determination of the parity of the neutral pion via the double Dalitz decay pi(0) -> e(+)e(-)e(+)e(-). Our sample, which consists of 30511 candidate decays, was collected from K(L) -> pi(0)pi(0)pi(0) decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi(0) parity and place a limit on scalar contributions to the pi(0) -> e(+)e(-)e(+)e(-) decay amplitude of less than 3.3% assuming CPT conservation. The pi(0)gamma(*)gamma(*) form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase-space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi(0) -> e(+)e(-)e(+)e(-)) = (3.26 +/- 0.18) x 10(-5).
Resumo:
We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results.
Resumo:
By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c(0)=0.176 500 5(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda(c)=(1-c(0))/c(0)=4.665 71(3) and a net transmissibility of (1-c(0))/(1+3c(0))=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.
Resumo:
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Resumo:
In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The BL model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density. Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479001]
Resumo:
The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]
Resumo:
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.
Resumo:
The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favor groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and, although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, which has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviors, we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model by generalizing the bounded confidence rule, which is common to many continuous opinion models, to what we called confidence rules. In that work we have found that the mean field version of this model (corresponding to a complete network) allows for stationary states where noninteracting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinions for certain confidence rules. Moreover, we show that the model does not become inactive; that is, the opinions keep changing, even in the stationary regime. This is an important result in the context of understanding how a rule that breeds local conformity is still able to sustain global diversity while avoiding a frozen stationary state. We also provide results that give some insights on how this behavior approaches the mean field behavior as the networks are changed.
Resumo:
Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.
Resumo:
Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.