938 resultados para Finite-dimensional discrete phase spaces
Resumo:
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a ℤ3 Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed. © 2013 American Institute of Physics.
Resumo:
In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic incompressible free surface flows governed by the eXtended Pom-Pom (XPP) model, considering a wide range of parameters. The numerical formulation presented in this work is an extension to three-dimensions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165-179] for solving two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we employ a combination of the projection method with an implicit technique for treating the pressure on the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge-Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe flow, and the numerical results presented include the simulation of two complex viscoelastic free surface flows: extrudate-swell problem and jet buckling phenomenon. © 2013 Elsevier B.V.
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile ofthe currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2003-2012 IEEE.
Resumo:
A rescale of the phase space for a family of two-dimensional, nonlinear Hamiltonian mappings was made by using the location of the first invariant Kolmogorov-Arnold-Moser (KAM) curve. Average properties of the phase space are shown to be scaling invariant and with different scaling times. Specific values of the control parameters are used to recover the Kepler map and the mapping that describes a particle in a wave packet for the relativistic motion. The phase space observed shows a large chaotic sea surrounding periodic islands and limited by a set of invariant KAM curves whose position of the first of them depends on the control parameters. The transition from local to global chaos is used to estimate the position of the first invariant KAM curve, leading us to confirm that the chaotic sea is scaling invariant. The different scaling times are shown to be dependent on the initial conditions. The universality classes for the Kepler map and mappings with diverging angles in the limit of vanishing action are defined. © 2013 Published by Elsevier Inc. All rights reserved.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
A América do Sul apresenta várias peculiaridades geomagnéticas, uma delas, é a presença do Eletrojato Equatorial, o qual se estende de leste para oeste no Brasil ao longo de aproximadamente 3500 km. Considerando-se o fato de que a influência do Eletrojato Equatorial pode ser detectada a grandes distâncias do seu centro, isto suscita o interesse em se estudar os seus efeitos na exploração magnetotelúrica no Brasil. A influência do eletrojato equatorial na prospecção magnetotelúrica tem sido modelada para meios geológicos uni e bidimensionais valendo-se para isto de soluções analíticas fechadas e de técnicas numéricas tais como elementos finitos e diferenças finitas. Em relação aos meios geológicos tridimensionais, eles tem sido modelados na forma de "camadas finas", usando o algoritmo "thin sheet". As fontes indutoras utilizadas para simular o eletrojato equatorial nestes trabalhos, tem sido linhas de corrente, eletrojatos gaussianos e eletrojatos ondulantes. Por outro lado, o objetivo principal da nossa tese foi o modelamento dos efeitos que o eletrojato equatorial provoca em estruturas tridimensionais próprias da geofísica da prospecção. Com tal finalidade, utilizamos o esquema numérico da equação integral, com as fontes indutoras antes mencionadas. De maneira similar aos trabalhos anteriores, os nossos resultados mostram que a influência do eletrojato equatorial somente acontece em frequências menores que 10-1 Hz. Este efeito decresce com a distância, mantendo-se até uns 3000 km do centro do eletrojato. Assim sendo, a presença de grandes picos nos perfis da resistividade aparente de um semi-espaço homogêneo, indica que a influência do eletrojato é notável neste tipo de meio. Estes picos se mostram com diferente magnitude para cada eletrojato simulado, sendo que a sua localização também muda de um eletrojato para outro. Entretanto, quando se utilizam modelos geo-elétricos unidimensionais mais de acordo com a realidade, tais como os meios estratificados, percebe-se que a resposta dos eletrojatos se amortece significativamente e não mostra muitas diferenças entre os diferentes tipos de eletrojato. Isto acontece por causa da dissipação da energia eletromagnética devido à presença da estratificação e de camadas condutivas. Dentro do intervalo de 3000 km, a resposta eletromagnética tridimensional pode ser deslocada para cima ou para baixo da resposta da onda plana, dependendo da localização do corpo, da frequência, do tipo de eletrojato e do meio geológico. Quando a resposta aparece deslocada para cima, existe um afastamento entre as sondagens uni e tridimensionais devidas ao eletrojato, assim como um alargamento da anomalia dos perfis que registra a presença da heterogeneidade tridimensional. Quando a resposta aparece deslocada para baixo, no entanto, há uma aproximação entre estes dois tipos de sondagens e um estreitamento da anomalia dos perfis. Por outro lado, a fase se mostra geralmente, de uma forma invertida em relação à resistividade aparente. Isto significa que quando uma sobe a outra desce, e vice-versa. Da mesma forma, comumente nas altas frequências as respostas uni e tridimensionais aparecem deslocadas, enquanto que nas baixas frequências se mostram com os mesmos valores, com exceção dos eletrojatos ondulantes com parâmetros de ondulação α = —2 e —3. Nossos resultados também mostram que características geométricas próprias das estruturas tridimensionais, tais como sua orientação em relação à direção do eletrojato e a dimensão da sua direção principal, afetam a resposta devido ao eletrojato em comparação com os resultados da onda plana. Desta forma, quando a estrutura tridimensional é rotacionada de 90°, em relação à direção do eletrojato e em torno do eixo z, existe uma troca de polarizações nas resistividades dos resultados, mas não existem mudanças nos valores da resistividade aparente no centro da estrutura. Ao redor da mesma, porém, se percebe facilmente alterações nos contornos dos mapas de resistividade aparente, ao serem comparadas com os mapas da estrutura na sua posição original. Isto se deve à persistência dos efeitos galvânicos no centro da estrutura e à presença de efeitos indutivos ao redor do corpo tridimensional. Ao alongar a direção principal da estrutura tridimensional, as sondagens magnetotelúricas vão se aproximando das sondagens das estruturas bidimensionais, principalmente na polarização XY. Mesmo assim, as respostas dos modelos testados estão muito longe de se considerar próximas das respostas de estruturas quase-bidimensionais. Porém, os efeitos do eletrojato em estruturas com direção principal alongada, são muito parecidos com aqueles presentes nas estruturas menores, considerando-se as diferenças entre as sondagens de ambos tipos de estruturas. Por outro lado, os mapas de resistividade aparente deste tipo de estrutura alongada, revelam um grande aumento nos extremos da estrutura, tanto para a onda plana como para o eletrojato. Este efeito é causado pelo acanalamento das correntes ao longo da direção principal da estrutura. O modelamento de estruturas geológicas da Bacia de Marajó confirma que os efeitos do eletrojato podem ser detetados em estruturas pequenas do tipo "horst" ou "graben", a grandes distâncias do centro do mesmo. Assim, os efeitos do eletrojato podem ser percebidos tanto nos meios estratificados como tridimensionais, em duas faixas de freqüência (nas proximidades de 10-1 Hz e para freqüências menores que 10-3 Hz), possivelmente influenciados pela presença do embasamento cristalino e a crosta inferior, respectivamente. Desta maneira, os resultados utilizando o eletrojato como fonte indutora, mostram que nas baixas freqüências as sondagens magnetotelúricas podem ser fortemente distorcidas, tanto pelos efeitos galvânicos da estrutura tridimensional como pela presença da influência do eletrojato. Conseqüêntemente, interpretações errôneas dos dados de campo podem ser cometidas, se não se corrigirem os efeitos do eletrojato equatorial ou, da mesma forma, não se utilisarem algoritmos tridimensionais para interpretar os dados, no lugar do usual modelo unidimensional de Tikhonov - Cagniard.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).
Resumo:
O campo magnetotelúrico em regiões equatoriais viola a condição de ondas planas por causa de uma fonte fortemente concentrada na direção E-W na ionosfera, denominada eletrojato equatorial. No presente trabalho, procurou-se analisar a resposta magnetotelúrica de fontes que simulam o efeito do eletrojato equatorial. Foram considerados dois tipos de fontes para simular o eletrojato: uma linha infinita de corrente e uma distribuição gaussiana de densidade de corrente em relação a uma das coordenadas horizontais. A resistividade aparente foi obtida através da relação de Cagniard e comparada com os resultados de ondas planas. É mostrada também a comparação entre a fase da impedância na superfície, para os três tipos de fontes (ondas planas, eletrojato gaussiano e linha de corrente). O problema de meios com heterogeneidades laterais foi resolvido em termos de campos secundários, sendo as equações diferenciais solucionadas através da técnica de elementos finitos bidimensionais. Os resultados mostram que o eletrojato tem pouca influência nas respostas (resistividade aparente e fase) de estruturas geológicas rasas. Entretanto, a influência pode ser considerável nas estruturas profundas (maior que 5000 m), principalmente se suas resistividades são altas (maior que 100 Ω.m). Portanto, a influência do eletrojato equatorial deve ser considerada na interpretação de dados magnetotelúricos de bacias sedimentares profundas ou no estudo da crosta terrestre.