818 resultados para Fiber Optic Sensors in Quality evaluation
Resumo:
The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92.10(-3) (degrees C)(-1). The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 degrees C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)
Resumo:
Efficient and effective coastal management decisions rely on knowledge of the impact of human activities on ecosystem integrity, vulnerable species, and valued ecosystem services—collectively, human impact on environmental quality (EQ). Ecosystem-based management (EBM) is an emerging approach to address the dynamics and complexities of coupled social-ecological systems. EBM “is intended to directly address the long-term sustainable delivery of ecosystem services and the resilience of marine ecosystems to perturbations” (Rosenberg and Sandifer, 2009). The lack of a tool that integrates human choices with the ecological connections between contributing watersheds and nearshore areas, and that incorporates valuation of ecosystem services, is a critical missing piece needed for effective and efficient coastal management. To address the need for an integrative tool for evaluation of human impacts on ecosystems and their services, Battelle developed the EcoVal™ Environmental Quality Evaluation System. The EcoVal system is an updated (2009) version of the EQ Evaluation System for Water Resources developed by Battelle for the U.S. Bureau of Reclamation (Dee et al., 1972). The Battelle EQ evaluation system has a thirty-year history of providing a standard approach to evaluate watershed EQ. This paper describes the conceptual approach and methodology of the updated EcoVal system and its potential application to coastal ecosystems. (PDF contains 4 pages)
Resumo:
Temperature and stress tunabilities of long-period Bragg gratings imprinted in Panda fiber are presented in this letter. It is shown that the temperature and strain response of the resonance peaks for fast and slow axes are different not only in their magnitudes but also in the signs of the slope. Furthermore, the characteristics for different order modes are different both in magnitudes and signs. The complicated phenomena are discussed by using a simplified model.