932 resultados para Ferromagnetic metals
Resumo:
Die Verwendung von Metallen zur Entwicklung der heutigen fortschrittlichen technologischenrnGesellschaft lässt auf eine lange Geschichte zurück blicken. Im Zuge des letzten Jahrhundertsrnwurde realisiert, dass die chemischen und radioaktiven Eigenschaften von Metallen einernernsthafte Bedrohung für die Menschheit darstellen können. In der modernen Geochemie ist esrnallgemein akzeptiert, dass die spezifischen physikochemische Formen entscheidender sind, alsrndas Verhalten der gesamten Konzentration der Spurenmetalle in der Umwelt. Die Definition derrnArtbildung kann grob als die Identifizierung und Quantifizierung der verschiedenen Formen oderrnPhasen für ein Element zugeordnet werden. Die chemische Extraktion ist eine gemeinsamernSpeziierungstechnik bei der die Fraktionierung des Gesamtmetallgehaltes zur Analyse der Quellernanthropogener Metallkontamination und zur Vorhersage der Bioverfügbarkeit von verschiedenenrnMetallformen dient. Die Philosophie der partiellen und sequenziellen Extraktionsmethodernbesteht darin, dass insbesondere das Extraktionsmittel phasenspezifisch unter chemischemrnAngriff unterschiedlicher Mischungsformen steht. Die Speziation von Metall ist wichtig bei derrnBestimmung der Toxizität, Mobilität, Bioverfügbarkeit des Metalls und damit ihr Schicksal inrnder Umwelt und biologischem System. Die Artenbildungsanalyse kann für das Verständnis derrnAuswirkung auf die menschliche Gesundheit und bei ökologischen Risiken durch diernQuantifizierung von Metallspezies bei einem Untersuchungs-standort angewendet werden undrnanschließend können Sanierungsstrategien für den Standort umgesetzt werden. Mit Hilfe derrnSpezifizierung wurden Arsen und Kupfer in landwirtschaftlichem Kalkdünger und Thallium inrnkontaminierten Böden untersucht und in den folgenden Abschnitten im Einzelnen dargestellt.
Resumo:
In order to reduce the costs of crystalline silicon solar cells, low-cost silicon materials like upgraded metallurgical grade (UMG) silicon are investigated for the application in the photovoltaic (PV) industry. Conventional high-purity silicon is made by cost-intensive methods, based on the so-called Siemens process, which uses the reaction to form chlorosilanes and subsequent several distillation steps before the deposition of high-purity silicon on slim high-purity silicon rods. UMG silicon in contrast is gained from metallurgical silicon by a rather inexpensive physicochemical purification (e.g., acid leaching and/or segregation). However, this type of silicon usually contains much higher concentrations of impurities, especially 3d transition metals like Ti, Fe, and Cu. These metals are extremely detrimental in the electrically active part of silicon solar cells, as they form recombination centers for charge carriers in the silicon band gap. This is why simple purification techniques like gettering, which can be applied between or during solar cell process steps, will play an important role for such low-cost silicon materials. Gettering in general describes a process, whereby impurities are moved to a place or turned into a state, where they are less detrimental to the solar cell. Hydrogen chloride (HCl) gas gettering in particular is a promising simple and cheap gettering technique, which is based on the reaction of HCl gas with transition metals to form volatile metal chloride species at high temperatures.rnThe aim of this thesis was to find the optimum process parameters for HCl gas gettering of 3d transition metals in low-cost silicon to improve the cell efficiency of solar cells for two different cell concepts, the standard wafer cell concept and the epitaxial wafer equivalent (EpiWE) cell concept. Whereas the former is based on a wafer which is the electrically active part of the solar cell, the latter uses an electrically inactive low-cost silicon substrate with an active layer of epitaxially grown silicon on top. Low-cost silicon materials with different impurity grades were used for HCl gas gettering experiments with the variation of process parameters like the temperature, the gettering time, and the HCl gas concentration. Subsequently, the multicrystalline silicon neighboring wafers with and without gettering were compared by element analysis techniques like neutron activation analysis (NAA). It was demonstrated that HCl gas gettering is an effective purification technique for silicon wafers, which is able to reduce some 3d transition metal concentrations by over 90%. Solar cells were processed for both concepts which could demonstrate a significant increase of the solar cell efficiency by HCl gas gettering. The efficiency of EpiWE cells could be increased by HCl gas gettering by approximately 25% relative to cells without gettering. First process simulations were performed based on a simple model for HCl gas gettering processes, which could be used to make qualitative predictions.
Resumo:
In questa tesi viene presentata un'analisi numerica dell'evoluzione dinamica del modello di Heisenberg XXZ, la cui simulazione è stata effettuata utilizzando l'algoritmo che va sotto il nome di DMRG. La transizione di fase presa in esame è quella dalla fase paramagnetica alla ferromagnetica: essa viene simulata in una catena di 12 siti per vari tempi di quench. In questo modo si sono potuti esplorare diversi regimi di transizione, da quello istantaneo al quasi-adiabatico. Come osservabili sono stati scelti l'entropia di entanglement, la magnetizzazione di mezza catena e lo spettro dell'entanglement, particolarmente adatti per caratterizzare la fisica non all'equilibrio di questo tipo di sistemi. Lo scopo dell'analisi è tentare una descrizione della dinamica fuori dall'equilibrio del modello per mezzo del meccanismo di Kibble-Zurek, che mette in relazione la sviluppo di una fase ordinata nel sistema che effettua la transizione quantistica alla densità di difetti topologici, la cui legge di scala è predicibile e legata agli esponenti critici universali caratterizzanti la transizione.
Resumo:
Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.
Resumo:
With increasing life expectancy and active lifestyles, the longevity of arthroplasties has become an important problem in orthopaedic surgery and will remain so until novel approaches to joint preservation have been developed. The sensitivity of the recipient to the metal alloys may be one of the factors limiting the lifespan of implants. In the present study, the response of human monocytes from peripheral blood to an exposure to metal ions was investigated, using the method of real-time polymerase chain reaction (PCR)-based low-density arrays. Upon stimulation with bivalent (Co2+ and Ni2+) and trivalent (Ti3+) cations and with the calcium antagonist LaCl3, the strength of the elicited monocytic response was in the order of Co2+ > or = Ni2+ > Ti3+ > or = LaCl3. The transcriptional regulation of the majority of genes affected by the exposure of monocytes to Co2+ and Ni2+ was similar. Some genes critically involved in the processes of inflammation and bone resorption, however, were found to be differentially regulated by these bivalent cations. The data demonstrate that monocytic gene expression is adapted in response to metal ions and that this response is, in part, specific for the individual metals. It is suggested that metal alloys used in arthroplasties may affect the extent of inflammation and bone resorption in the peri-implant tissues in dependence of their chemical composition.
Resumo:
The monolithic integration of dissimilar microsystems is often limited by conflicts in thermal budget. One of the most prevalent examples is the fabrication of active micro-electromechanical systems (MEMS), as structural films utilized for surface micromachining such as polysilicon typically require processing at temperatures unsuitable for microelectronic circuitry. A localized annealing process could provide for the post-deposition heat treatment of integrated structures without compromising active devices. This dissertation presents a new microfabrication technology based on the inductive heating of ferromagnetic films patterned to define regions for heat treatment. Support is provided through theory, finite-element modeling, and experimentation, concluding with the demonstration of inductive annealing on polysilicon inertial sensing structures. Though still in its infancy, the results confirm the technology to be a viable option for integrated MEMS as well as any microsystem fabrication process requiring a thermal gradient.
Resumo:
ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.
Resumo:
It is known that the electrical resistance of annealed metals is usually smaller than that of metals in their cold worked state. The curve showing the relation between electrical resistance and annealing temperature reaches a minimum; continued annealing at higher temperature produces an increase in the electrical resistance. In the case of alloys it has been noted that a second decrease occurs at higher annealing temperature. The following work corroborates the observance of previous investigations. The electrical resistance of cold worked copper, gold, nickel, and iron decreased with annealing and then increased, the minimum being around 300° C. or 400° C. Monel metal showed a minimum resistance followed by an increase which in turn was followed by a second decrease.
Resumo:
Many investigations have shown that the electrical resistance of soft annealed metals is usually smaller than that of metals in their hard, cold worked state. By annealing cold-worked metals, the electrical resistance decreases to a minimum and then increases upon continued annealing at higher temperatures. The work performed in this investigation upon silver, aluminum, copper, nickel, and soft steel corroborates this idea.
Resumo:
The aim of this research was to investigate the possibilities of roasting and leaching a bulk copper-zinc sulfide concentrate, and the subsequent separation of the metals from the leach solution by electrolytic deposition.
Resumo:
Solders are not new alloys, since they were known in late Roman times when they were mentioned by Pliny. These solders differed very little from our modern ones. Tertiarium, consisting of one part of tin to two parts of lead, is known today as plumbers solder; and argentarium, consisting of equal parts of lend and tin, is still extensively used for many purposes.
Resumo:
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Resumo:
We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut + gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑ 28PAHs in muscle tissues averaged 192 ng g− 1 dw (range: 71–481 ng g− 1 dw) and were not statistically different between locations. The concentrations of ∑ 28 PAHs were higher in guts + gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1 × 10− 6. The concentrations of ∑ 15 OPAHs in fish muscles averaged 422 ng g− 1 dw (range: 28–1715 ng g− 1dw). The ∑ 15 OPAHs/∑ 16 US-EPA PAHs concentration ratio was > 1 in 68% of the fish muscles and 100% of guts + gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts + gills were significantly (p < 0.05) correlated with their octanol–water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts + gills than in muscle tissues. The target hazard quotients for metals were < 1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.