998 resultados para FOCAL CEREBRAL-ISCHEMIA
Resumo:
Une lésion fonctionnelle ou structurale des artérioles intramurales influence le seuil ischémique du myocarde. Le diagnostic de dysfonction microvasculaire est retenu en présence d'une diminution du flux coronaire maximal et de coronaires angio-graphiquement normales ou presque normales. Un trouble de la microcirculation peut traduire une dysfonction endothéliale chez le sujet diabétique ou hyperlipidémique, ou une lésion structurale ou fonctionnelle dans le cadre de la cardiomyopathie hypertrophique, la sténose aortique ou l'hypertension artérielle. Après recanalisation de l'artère responsable d'un infarctus, la mesure de la fonction microcirculatoire permet d'estimer la qualité de la reperfusion myocardique. L'appréciation de la fonction microvasculaire est un enjeu majeur dans l'évaluation de l'ischémie du myocarde en l'absence de sténose coronaire. Functional or structural lesions in intramural arterioles influence the ischemic threshold of the myocardium. Microvascular dysfonction is evidenced by a decrease in coronary blood flow during maximum hyperemia in the presence of angiographically normal or near-normal coronary arteries. Microvascular dysfonction may reflect endothelial dysfonction in diabetic or hyperlipidemic patients, as well as structural and functional changes in patients with hypertrophic cardiomyopathy, aortic stenosis or hypertension. Assessing microvascular fonction after thrombolysis or primary angioplasty for acute myocardial infarction allows to estimate the quality of myocardial reperfusion. Assessing microvascular fonction is a major component of the evaluation of myocardial ischemia in the absence of coronary artery stenoses.
Resumo:
INTRODUCTION: Focal therapy may reduce the toxicity of current radical treatments while maintaining the oncological benefit. Irreversible electroporation (IRE) has been proposed to be tissue selective and so might have favourable characteristics compared to the currently used prostate ablative technologies. The aim of this trial is to determine the adverse events, genito-urinary side effects and early histological outcomes of focal IRE in men with localised prostate cancer. METHODS: This is a single centre prospective development (stage 2a) study following the IDEAL recommendations for evaluating new surgical procedures. Twenty men who have MRI-visible disease localised in the anterior part of the prostate will be recruited. The sample size permits a precision estimate around key functional outcomes. Inclusion criteria include PSA ≤ 15 ng/ml, Gleason score ≤ 4 + 3, stage T2N0M0 and absence of clinically significant disease outside the treatment area. Treatment delivery will be changed in an adaptive iterative manner so as to allow optimisation of the IRE protocol. After focal IRE, men will be followed during 12 months using validated patient reported outcome measures (IPSS, IIEF-15, UCLA-EPIC, EQ-5D, FACT-P, MAX-PC). Early disease control will be evaluated by mpMRI and targeted transperineal biopsy of the treated area at 6 months. DISCUSSION: The NEAT trial will assess the early functional and disease control outcome of focal IRE using an adaptive design. Our protocol can provide guidance for designing an adaptive trial to assess new surgical technologies in the challenging landscape of health technology assessment in prostate cancer treatment.
Resumo:
A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.
Resumo:
BACKGROUND: XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide which selectively inhibits the c-Jun N-terminal kinase, is a powerful neuroprotectant in mouse models of middle cerebral artery occlusion (MCAo) with delayed intracerebroventricular injection. We aimed to determine whether this neuroprotection could also be achieved by intravenous injection of XG-102, which is a more feasible approach for future use in stroke patients. We also tested the compatibility of the compound with recombinant tissue plasminogen activator (rtPA), commonly used for intravenous thrombolysis and known to enhance excitotoxicity. METHODS: Male ICR-CD1 mice were subjected to a 30-min-suture MCAo. XG-102 was injected intravenously in a single dose, 6 h after ischemia. Hippocampal slice cultures were subjected to oxygen (5%) and glucose (1 mM) deprivation for 30 min. rtPA was added after ischemia and before XG-102 administration, both in vitro and in vivo. RESULTS: The lowest intravenous dose achieving neuroprotection was 0.0003 mg/kg, which reduced the infarct volume after 48 h from 62 +/- 19 mm(3) (n = 18) for the vehicle-treated group to 18 +/- 9 mm(3) (n = 5, p < 0.01). The behavioral outcome was also significantly improved at two doses. Addition of rtPA after ischemia enhanced the ischemic damage both in vitro and in vivo, but XG-102 was still able to induce a significant neuroprotection. CONCLUSIONS: A single intravenous administration of XG-102 several hours after ischemia induces a powerful neuroprotection. XG-102 protects from ischemic damage in the presence of rtPA. The feasibility of systemic administration of this promising compound and its compatibility with rtPA are important steps for its development as a drug candidate in ischemic stroke.
Resumo:
Background: It is unknown whether cerebral perfusion in geriatric and younger patients under general anaesthesia differs. Methods: We compared 2 groups of patients undergoing elective major non-cardiac surgery under standardized general anaesthesia (thiopental, sevoflurane, fentanyl, atracurium). Group 1: 18-40 yrs (n = 20), Group 2: >65 yrs (n = 37). Cerebral perfusion was investigated with transcranial Doppler and near-infrared spectroscopy (NIRS). Arterial blood pressure was monitored continuously with a Finapres device. Mx, an index allowing continuous monitoring of cerebrovascular autoregulation based on the changes in mean arterial blood pressure (MAP) and cerebral blood flow velocity was calculated. Data are shown as mean } SD. Results: MAP (86 } 9.6 vs 79 } 10.9 mm Hg, p = 0.02), end-tidal concentration of sevoflurane (1.9 } 0.3 vs 1.6 } 0.3%, p <0.01), and the cerebral tissue oxygenation index measured by NIRS (72 } 4 vs 68 } 5%, p = 0.01), were significantly lower in Group 2. The end-tidal concentration of O2 was significantly higher in Group 2 (46 } 4 vs 48 } 4% p = 0.04). There were no significant differences between Group 1 and 2 for cerebral blood flow velocity (41 } 10 vs 43 } 18 cm/s), end tidal CO2 (4.7 } 0.3 vs 4.6 } 0.3 kPa) and cerebrovascular autoregulation (Mx 0.42 } 0.2 vs 0.48 } 0.2). In Group 1 35% and in Group 2 43% of the patients had an index of autoregulation suggesting disturbed cerebrovascular autoregulation (p = n.s.). Conclusions: In elderly patients under general anaesthesia with sevoflurane the cerebral tissue oxygenation index was significantly lower than in younger patients despite higher end-tidal oxygen concentrations. Our data suggest subtle differences in cerebral perfusion between geriatric and younger
Resumo:
Bright-field wholemount labeling techniques applied to the mammalian central nervous system (CNS) offer advantages over conventional methods based on sections since an immediate and three-dimensional view of the stained components is provided. It thereby becomes possible to survey and count large number of cells and fibers in their natural relationships. The ability of confocal laser scanning microscopy to visualize in one focal plane the fluorescence associated with multiple markers could be most valuable by the availability of reliable wholemount fluorescent techniques. Accordingly, based in our previously published bright-field wholemount protocols [Brain Res. Prot. 2 (1998) 165-173], we have devised an effective immmunofluorescence wholemount procedure. We show that reliable wholemount fluorescent staining can be obtained using isolated complete CNS aged up to rat embryonic day 17, with antibodies penetration in the millimeter range. Examples are shown of preparations in which colocalization can be observed in nerve cells of cytoskeletal and calcium-binding proteins.
Resumo:
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Resumo:
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB(2) knockout mice and were not prevented by CB(1/2) antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB(1/2) receptors.
Resumo:
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Resumo:
Astrocytes emerge as key players in motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS). Whether astrocytes cause direct damage by releasing toxic factors or contribute indirectly through the loss of physiological functions is unclear. Here we identify in the hSOD1(G93A) transgenic mouse model of ALS a degenerative process of the astrocytes, restricted to those directly surrounding spinal motor neurons. This phenomenon manifests with an early onset and becomes significant concomitant with the loss of motor cells and the appearance of clinical symptoms. Contrary to wild-type astrocytes, mutant hSOD1-expressing astrocytes are highly vulnerable to glutamate and undergo cell death mediated by the metabotropic type-5 receptor (mGluR5). Blocking mGluR5 in vivo slows down astrocytic degeneration, delays the onset of the disease and slightly extends survival in hSOD1(G93A) transgenic mice. We propose that excitotoxicity in ALS affects both motor neurons and astrocytes, favouring their local interactive degeneration. This new mechanistic hypothesis has implications for therapeutic interventions.Cell Death and Differentiation advance online publication, 11 July 2008; doi:10.1038/cdd.2008.99.