929 resultados para FILLED TUBE COLUMNS
Resumo:
The research is concerned with the application of the computer simulation technique to study the performance of reinforced concrete columns in a fire environment. The effect of three different concrete constitutive models incorporated in the computer simulation on the structural response of reinforced concrete columns exposed to fire is investigated. The material models differed mainly in respect to the formulation of the mechanical properties of concrete. The results from the simulation have clearly illustrated that a more realistic response of a reinforced concrete column exposed to fire is given by a constitutive model with transient creep or appropriate strain effect The assessment of the relative effect of the three concrete material models is considered from the analysis by adopting the approach of a parametric study, carried out using the results from a series of analyses on columns heated on three sides which produce substantial thermal gradients. Three different loading conditions were used on the column; axial loading and eccentric loading both to induce moments in the same sense and opposite sense to those induced by the thermal gradient. An axially loaded column heated on four sides was also considered. The computer modelling technique adopted separated the thermal and structural responses into two distinct computer programs. A finite element heat transfer analysis was used to determine the thermal response of the reinforced concrete columns when exposed to the ISO 834 furnace environment. The temperature distribution histories obtained were then used in conjunction with a structural response program. The effect of the occurrence of spalling on the structural behaviour of reinforced concrete column is also investigated. There is general recognition of the potential problems of spalling but no real investigation into what effect spalling has on the fire resistance of reinforced concrete members. In an attempt to address the situation, a method has been developed to model concrete columns exposed to fire which incorporates the effect of spalling. A total of 224 computer simulations were undertaken by varying the amounts of concrete lost during a specified period of exposure to fire. An array of six percentages of spalling were chosen for one range of simulation while a two stage progressive spalling regime was used for a second range. The quantification of the reduction in fire resistance of the columns against the amount of spalling, heating and loading patterns, and the time at which the concrete spalls appears to indicate that it is the amount of spalling which is the most significant variable in the reduction of fire resistance.
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
This paper presents the first part of a study of the combustion processes in an industrial radiant tube burner (RTB). The RTB is used typically in heat-treating furnaces. The work was initiated because of the need for improvements in burner lifetime and performance. The present paper is concerned with the flow of combustion air; a future paper will address the combusting flow. A detailed three-dimensional computational fluid dynamics model of the burner was developed, validated with experimental air flow velocity measurements using a split-film probe. Satisfactory agreement was achieved using the k-e turbulence model. Various features along the air inlet passage were subsequently analysed. The effectiveness of the air recuperator swirler was found to be significantly compromised by the need for a generous assembly tolerance. Also, a substantial circumferential flow maldistribution introduced by the swirler is effectively removed by the positioning of a constriction in the downstream passage.
Resumo:
This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.
Resumo:
Fueled by their high third-order nonlinearity and nonlinear saturable absorption, carbon nanotubes (CNT) are expected to become an integral part of next-generation photonic devices such as all-optical switches and passive mode-locked lasers. However, in order to fulfill this expectation it is necessary to identify a suitable platform that allows the efficient use of the optical properties of CNT. In this paper, we propose and implement a novel device consisting of an optofluidic device filled with a dispersion of CNT. By fabricating a microchannel through the core of a conventional fiber and filling it with a homogeneous solution of CNTs on Dimethylformamide (DMF), a compact, all-fiber saturable absorber is realized. The fabrication of the micro-fluidic channel is a two-step process that involves femtosecond laser micro-fabrication and chemical etching of the laser-modified regions. All-fiber high-energy, passive mode-locked lasing is demonstrated with an output power of 13.5 dBm. The key characteristics of the device are compactness and robustness against optical, mechanical and thermal damage.
Resumo:
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.
Resumo:
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-μm average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time TE=40 ms, and 6-10% in consolidated porous media for TE=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm3 and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed. © 2007 Elsevier Inc. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.
Resumo:
We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.