899 resultados para FACTOR RECEPTOR-1
Resumo:
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
Resumo:
We present evidence that the JAK-STAT signal transduction pathway regulates multiple developmental processes in Drosophila. We screened for second-site mutations that suppress the phenotype of the hyperactive hopTum-1 Jak kinase, and recovered a mutation that meiotically maps to the known chromosomal position of D-Stat, a Drosophila stat gene. This hypomorphic mutation, termed statHJ contains a nucleotide substitution in the first D-Stat intron, resulting in a reduction in the number of correctly processed transcripts. Further, the abnormally processed mRNA encodes a truncated protein that has a dominant negative effect on transcriptional activation by the wild-type cDNA in cell culture. statHJ mutants exhibit patterning defects that include the formation of ectopic wing veins, similar to those seen in mutants of the epidermal growth factor/receptor pathway. Abnormalities in embryonic and adult segmentation and in tracheal development were also observed. The hopTum-1 and statHJ mutations can partially compensate for each other genetically, and Hop overexpression can increase D-Stat transcriptional activity in vitro, indicating that the gene products interact in a common regulatory pathway.
Resumo:
Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response.
Resumo:
High-level globin expression in erythroid precursor cells depends on the integrity of NF-E2 recognition sites, transcription factor AP-1-like protein-binding motifs, located in the upstream regulatory regions of the alpha- and beta-globin loci. The NF-E2 transcription factor, which recognizes these sites, is a heterodimer consisting of (i) p45 NF-E2 (the larger subunit), a hematopoietic-restricted basic leucine zipper protein, and (ii) a widely expressed basic leucine zipper factor, p18 NF-E2, the smaller subunit. p18 NF-E2 protein shares extensive homology with the maf protooncogene family. To determine an in vivo role for p18 NF-E2 protein we disrupted the p18 NF-E2-encoding gene by homologous recombination in murine embryonic stem cells and generated p18 NF-E2-/- mice. These mice are indistinguishable from littermates throughout all phases of development and remain healthy in adulthood. Despite the absence of expressed p18 NF-E2, DNA-binding activity with the properties of the NF-E2 heterodimer is present in fetal liver erythroid cells of p18 NF-E2-/- mice. We speculate that another member of the maf basic leucine zipper family substitutes for the p18 subunit in a complex with p45 NF-E2. Thus, p18 NF-E2 per se appears to be dispensable in vivo.
Resumo:
CD40 is a 45-kDa glycoprotein member of the tumor necrosis factor receptor (TNFR) family expressed on B cells, thymic epithelial cells, dendritic cells, and some carcinoma cells. The unique capacity of CD40 to trigger immunoglobulin isotype switching is dependent on the activation of protein-tyrosine kinases, yet CD40 possesses no kinase domain and no known consensus sequences for binding to protein-tyrosine kinases. Recently, an intracellular protein (CD40bp/LAP-1/CRAF-1) which belongs to the family of TNFR-associated proteins was reported to associate with CD40. We describe a 23-kDa cell surface protein (p23) which is specifically associated with CD40 on B cells and on urinary bladder transitional carcinoma cells. Protein microsequencing revealed that p23 shows no homology to any known protein. A rabbit antibody raised against a peptide derived from p23 recognized a 23-kDa protein in CD40 immunoprecipitates. In contrast to CD40bp/LAP-1/CRAF-1, p23 was not associated with TNFR p80 (CD120b). These findings suggest that p23 is a novel member of the CD40 receptor complex.
Resumo:
Fas, a member of the tumor necrosis factor receptor family, can induce apoptosis when activated by Fas ligand binding or anti-Fas antibody crosslinking. Genetic studies have shown that a defect in Fas-mediated apoptosis resulted in abnormal development and function of the immune system in mice. A point mutation in the cytoplasmic domain of Fas (a single base change from T to A at base 786), replacing isoleucine with asparagine, abolishes the signal transducing property of Fas. Mice homozygous for this mutant allele (lprcg/lprcg mice) develop lymphadenopathy and a lupus-like autoimmune disease. Little is known about the mechanism of signal transduction in Fas-mediated apoptosis. In this study, we used the two-hybrid screen in yeast to isolate a Fas-associated protein factor, FAF1, which specifically interacts with the cytoplasmic domain of wild-type Fas but not the lprcg-mutated Fas protein. This interaction occurs not only in yeast but also in mammalian cells. When transiently expressed in L cells, FAF1 potentiated Fas-induced apoptosis. A search of available DNA and protein sequence data banks did not reveal significant homology between FAF1 and known proteins. Therefore, FAF1 is an unusual protein that binds to the wild type but not the inactive point mutant of Fas. FAF1 potentiates Fas-induced cell killing and is a candidate signal transducing molecule in the regulation of apoptosis.
Resumo:
Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.
Resumo:
Three gene products, including Myc and the D- and E-type G1 cyclins, are rate limiting for G1 progression in mammalian fibroblasts. Quiescent mouse NIH 3T3 fibroblasts engineered to express a mutant colony-stimulating factor (CSF-1) receptor (CSF-1R 809F) fail to synthesize c-myc and cyclin D1 mRNAs upon CSF-1 stimulation and remain arrested in early G1 phase. Ectopic expression of c-myc or either of three D-type cyclin genes, but not cyclin E, resensitized these cells to the mitogenic effects of CSF-1, enabling them to proliferate continuously in liquid culture and to form colonies in agar in response to the growth factor. Rescue by cyclin D1 was enhanced by c-myc but not by cyclin E and was reversed by infecting cyclin D1-reconstituted cells with a retroviral vector encoding catalytically inactive cyclin-dependent kinase 4. Induction of cyclin D1 mRNA by CSF-1 was restored in cells forced to express c-myc, and vice versa, suggesting that expression of the two genes is interdependent. Cells reconstituted with c-myc were prevented from entering S phase when microinjected with a monoclonal antibody to cyclin D1, and conversely, those rescued by cyclin D1 were inhibited from forming CSF-1-dependent colonies when challenged with a dominant-negative c-myc mutant. Cyclin D mutants defective in binding to the retinoblastoma protein were impaired in rescuing mitogenic signaling. Therefore, Myc and D-type cyclins collaborate during the mitogenic response to CSF-1, whereas cyclin E functions in a separate pathway.
Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division.
Resumo:
Growth factors have been defined by their ability to promote the proliferative expansion of receptor-bearing cells. For example, antigen-activated T cells expressing the alpha beta gamma form of the interleukin 2 (IL-2) receptor will proliferate in response to IL-2. In contrast, resting T cells, which express the IL-2 receptor beta and gamma chains, do not proliferate in response to IL-2. We demonstrate that the survival of resting T cells following gamma irradiation is greatly enhanced by pretreatment with IL-2. The radioprotective effect of IL-2 is dose dependent, does not result from the induction of cell proliferation, and does not require expression of the IL-2 receptor alpha chain. Thus, the beta gamma IL-2 receptor expressed on resting T cells can transduce signals that promote cell survival without committing the T cell to undergo cell division. IL-4 and IL-7, but not IL-1, IL-3, or IL-6, were also found to enhance the survival of quiescent T cells following gamma irradiation. Thus, certain growth factor-receptor interactions can serve to maintain cell viability in a manner that is independent of their ability to initiate or maintain cell proliferation. These data may have important implications for the use of growth factors in patients being treated with radiation and/or chemotherapy.
Resumo:
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), which is thought to be a retrograde messenger in long-term potentiation (LTP), enhances glutamate release and LTP through an action on presynaptic nerve endings. The PAF antagonist BN 52021 blocks CA1 LTP in hippocampal slices, and, when infused into rat dorsal hippocampus pre- or posttraining, blocks retention of inhibitory avoidance. Here we report that memory is affected by pre- or posttraining infusion of the PAF analog 1-O-hexadecyl-2-N-methylcarbamoyl-sn-glycerol-3-phosphocholine (mc-PAF) into either rat dorsal hippocampus, amygdala, or entorhinal cortex. Male Wistar rats were implanted bilaterally with cannulae in these brain regions. After recovery from surgery, the animals were trained in step-down inhibitory avoidance or in a spatial habituation task and tested for retention 24 h later. mc-PAF (1.0 microgram per side) enhanced retention test performance of the two tasks when infused into the hippocampus before training without altering training session performance. In addition, mc-PAF enhanced retention test performance of the avoidance task when infused into (i) the hippocampus 0 but not 60 min after training; (ii) the amygdala immediately after training; and (iii) the entorhinal cortex 100 but not 0 or 300 min after training. In confirmation of previous findings, BN 52021 (0.5 microgram per side) was found to be amnestic for the avoidance task when infused into the hippocampus or the amygdala immediately but not 30 or more minutes after training or into the entorhinal cortex 100 but not 0 or 300 min after training. These findings support the hypothesis that memory involves PAF-regulated events, possibly LTP, generated at the time of training in hippocampus and amygdala and 100 min later in the entorhinal cortex.
Resumo:
Several lines of evidence have suggested that ganglioside GM1 stimulates neuronal sprouting and enhances the action of nerve growth factor (NGF), but its precise mechanism is yet to be elucidated. We report here that GM1 directly and tightly associates with Trk, the high-affinity tyrosine kinase-type receptor for NGF, and strongly enhances neurite outgrowth and neurofilament expression in rat PC12 cells elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. The potentiation of NGF activity by GM1 appears to involve tyrosine-autophosphorylation of Trk, which contains intrinsic tyrosine kinase activity that has been localized to the cytoplasmic domain. In the presence of GM1 in culture medium, there is a > 3-fold increase in NGF-induced autophosphorylation of Trk as compared with NGF alone. We also found that GM1 could directly enhance NGF-activated autophosphorylation of immunoprecipitated Trk in vitro. Monosialoganglioside GM1, but not polysialogangliosides, is tightly associated with immunoprecipitated Trk. Furthermore, such tight association of GM1 with Trk appears to be specific, since a similar association was not observed with other growth factor receptors, such as low-affinity NGF receptor (p75NGR) and epidermal growth factor receptor (EGFR). Thus, these results strongly suggest that GM1 functions as a specific endogenous activator of NGF receptor function, and these enhanced effects appear to be due, at least in part, to tight association of GM1 with Trk.
Resumo:
Cultured human umbilical vein endothelial cells (EC) constitutively express a low level of CD40 antigen as detected by monoclonal antibody binding and fluorescence flow cytometric quantitation. The level of expression on EC is increased about 3-fold following 24 h treatment with optimal concentrations of tumor necrosis factor, interleukin 1, interferon beta, or interferon gamma; both interferons show greater than additive induction of CD40 when combined with tumor necrosis factor or interleukin 1. Expression of CD40 increases within 8 h of cytokine treatment and continues to increase through 72 h. A trimeric form of recombinant murine CD40 ligand acts on human EC to increase expression of leukocyte adhesion molecules, including E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1. CD40 may be detected immunocytochemically on human microvascular EC in normal skin. We conclude that endothelial CD40 may play a role as a signaling receptor in the development of T-cell-mediated inflammatory reactions.
Resumo:
The earliest characterized events during induction of tubulogenesis in renal anlage include the condensation or compaction of metanephrogenic mesenchyme with the concurrent upregulation of WT1, the gene encoding the Wilms tumor transcriptional activator/suppressor. We report that basic fibroblast growth factor (FGF2) can mimic the early effects of an inductor tissue by promoting the condensation of mesenchyme and inhibiting the tissue degeneration associated with the absence of an inductor tissue. By in situ hybridization, FGF2 was also found to mediate the transcriptional activation of WT1 and of the hepatocyte growth factor receptor gene, c-met. Although FGF2 can induce these early events of renal tubulogenesis, it cannot promote the epithelial conversion associated with tubule formation in metanephrogenic mesenchyme. For this, an undefined factor(s) from pituitary extract in combination with FGF2 can cause tubule formation in uninduced mesenchyme. These findings support the concept that induction in kidney is a multiphasic process that is mediated by more than a single comprehensive inductive factor and that soluble molecules can mimic these inductive activities in isolated uninduced metanephrogenic mesenchyme.
Resumo:
Src homology 2 (SH2) domain-mediated interactions with phosphotyrosine residues are critical in many intracellular signal transduction pathways. Attempts to understand the determinants of specificity and selectivity of these interactions have prompted many binding studies that have used several techniques. Some discrepancies, in both the absolute and relative values of the dissociation constants for particular interactions, are apparent. To establish the correct dissociation constants and to understand the origin of these differences, we have analyzed three previously determined interactions using the techniques of surface plasmon resonance and isothermal titration calorimetry. We find that the binding of SH2 domains to phosphopeptides is weaker than generally presumed. A phosphopeptide based on the hamster polyoma middle tumor antigen interacts with the SH2 domain from Src with an equilibrium dissociation constant (Kd) of 600 nM; a phosphopeptide based on one binding site from the platelet-derived growth factor receptor binds to the N-terminal SH2 domain of the 1-phosphatidylinositol 3-kinase p85 subunit with a Kd of 300 nM; and a phosphopeptide based on the C terminus of Lck binds to the SH2 domain of Lck with a Kd of 4 microM. In addition, we demonstrate that avidity effects that result from the dimerization of glutathione S-transferase fusion proteins with SH2 domains could be responsible for overestimates of affinities for these interactions previously studied by surface plasmon resonance.
Resumo:
The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation.