985 resultados para External Force
Resumo:
A new technique was developed for characterisation of stainless steel to intergramilar stress corrosion cracking by atomic force microscopy. The technique proved to be effective in sensitisation identification of AISI 304 stainless steel and might be promising in sensitisation identification of other stainless steels. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
空间机器人和大型柔性空间结构在航天器调姿、变轨、外部扰动的情况下将引起振动问题,其低频大幅值振动将持续很长时间,这将影响航天器系统的稳定性和控制精度。为了快速抑制低频大幅值振动及残余振动,提出采用复合可控反作用力幅值的喷气式驱动和压电陶瓷驱动方案进行振动控制。进行基于复合控制的柔性臂系统动力学建模并给出控制算法。设计并建立柔性机械臂试验平台,构建气动驱动控制回路及压电驱动控制回路。进行基于压电陶瓷驱动器、喷气式驱动器及复合喷气和压电驱动器的柔性臂大幅值低频模态振动控制的几种方法试验比较研究。试验结果表明,采用的控制方案和方法既可以快速地抑制柔性机械臂统的低频大幅值振动,又明显地同时抑制高频和低频小幅值残余振动。
Resumo:
在已有制造工艺及标定技术基础上,为进一步改善大型铰接并联六维测力平台的测量精度,本文基于螺旋理论和影响系数原理,引入符号函数建立了Stewart结构大型铰接六维测力平台的摩擦模型。文中提出了关节摩擦对铰接并联六维测力平台测量精度的影响矩阵及I、H类误差表达式,绘制了在不同外载和关节摩擦系数条件下,六维测力平台的I、II类误差曲线,并总结丁关节摩擦和平台自重对测力平台测量精度的影响规律。为具有普通球形铰链人型Stewart平台六维测力下台精度的提高和改善提供了理论基础。
Resumo:
研究结果表明,环境扰动对月球车运动的影响取决于月球车自身的结构参数及动力学特性。为合理地设计月球车的结构参数及动力学特性、规划和控制月球车的运动提供参考依据。
Resumo:
In the past decade density functional theory (DFT) has made its way from a peripheral position in quantum chemistry to center. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. This dissertation is devoted to the study of physical and chemical properties of planetary materials by first-principle calculation. The concerned properties include the geometry, elastic constants and anisotropy. In the first chapter, we give a systematic introduction to theoretical background and review its progress. Development of quantum chemistry promotes the establishment of DFT. Theorem of Hohenberg-Kohn is the fundament of DFT and is developed to Kohn-Sham equation, which can be used to perform real calculations. Now, new corrections and extensions, together with developed exchange-correlation, have made DFT more accurate and suitable for larger systems. In the second chapter, we focus on the calculational methods and technical aspects of DFT. Although it is important to develop methods and program, external package are still often used. At the end of this chapter, we briefly some widely used simulation package and the application of DFT. In the third chapter, we begin to focus on properties of real materials by first principles calculation. We study a kind of minerals named Ca perovskite, investigate its possible structure and anisotropy at Earth’s mental condition. By understanding and predicting geo-physically important materials properties at extreme conditions, we can get the most accurate information to interpret seismic data in the context of likely geophysical processes.
Resumo:
Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.
Resumo:
The relationship between the management and the culture was explored from the view of social norm's theory. In concrete terms, the differences of the hierarchical structure of the social norm among the Chinese, the Japanese and the American were studied systematically by using interview, case study, questionnaire survey and the structure equation model, etc. The results were: (1) The basic two types of the social norms of the Chinese, the American and the Japanese were the same: the external control norm and the internal control norm. The basic dimensions of the two types of norms composed of moral principle, value orientation, the law and the rules, and the social custom were consistent among the three countries. Furthermore, the dimensions of social norms were hierarchical because of the functioning of the different culture, which consisted of the hierarchical structure system. (2) Although there were the same dimensions among the three countries, the contents of these dimensions had both the common norms surpassing the specific culture and the particular norms depending on the specific culture. (3) The basic structures of the social norms in China and in Japan were the same: the internal control norms played a main role and the external control norm was auxiliary. On one hand, within the internal norm of the Chinese, the moral principle was the main force while the value orientation was the supplementary; within the external norm, the law and the rules was the main force while the social culture custom was supplementary. On the other hand, the relationship between the external and the internal dimensions of the Japanese turned out to be contrary to those of the Chinese. (4) The structure of the American social norms were different from the Chinese: for the American, the external control norm played a main role while the internal control norm was assistant. Furthermore, the law and the rule was the major aspect while the social costumes was the second in the external control dimension. In addition, the value orientation led the performance style of the American, while the moral principle played the second role in the internal control structure. (5) The social norms related to the management performance were found including work responsibility, organization commitment, meeting making-decision, communication style, work duty and interpersonal conflict by inventory and case study. The mangers from China, Japan and America had significant different views on paying attention to the management norms. In a word, the culture differences of the social norm were the fundamental reason of the management conflict.
Resumo:
Previous research in force control has focused on the choice of appropriate servo implementation without corresponding regard to the choice of mechanical hardware. This report analyzes the effect of mechanical properties such as contact compliance, actuator-to-joint compliance, torque ripple, and highly nonlinear dry friction in the transmission mechanisms of a manipulator. A set of requisites for high performance then guides the development of mechanical-design and servo strategies for improved performance. A single-degree-of-freedom transmission testbed was constructed that confirms the predicted effect of Coulomb friction on robustness; design and construction of a cable-driven, four-degree-of- freedom, "whole-arm" manipulator illustrates the recommended design strategies.
Resumo:
This thesis addresses the problem of synthesizing grasps that are force-closure and stable. The synthesis of force-closure grasps constructs independent regions of contact for the fingertips, such that the motion of the grasped object is totally constrained. The synthesis of stable grasps constructs virtual springs at the contacts, such that the grasped object is stable, and has a desired stiffness matrix about its stable equilibrium. A grasp on an object is force-closure if and only if we can exert, through the set of contacts, arbitrary forces and moments on the object. So force-closure implies equilibrium exists because zero forces and moment is spanned. In the reverse direction, we prove that a non-marginal equilibrium grasp is also a force-closure grasp, if it has at least two point contacts with friction in 2D, or two soft-finger contacts or three hard-finger contacts in 3D. Next, we prove that all force-closure grasps can be made stable, by using either active or passive springs at the contacts. The thesis develops a simple relation between the stability and stiffness of the grasp and the spatial configuration of the virtual springs at the contacts. The stiffness of the grasp depends also on whether the points of contact stick, or slide without friction on straight or curved surfaces of the object. The thesis presents fast and simple algorithms for directly constructing stable fore-closure grasps based on the shape of the grasped object. The formal framework of force-closure and stable grasps provides a partial explanation to why we stably grasp objects to easily, and to why our fingers are better soft than hard.
Resumo:
Compliant motion occurs when the manipulator position is constrained by the task geometry. Compliant motion may be produced either by a passive mechanical compliance built in to the manipulator, or by an active compliance implemented in the control servo loop. The second method, called force control, is the subject of this report. In particular, this report presents a theory of force control based on formal models of the manipulator, and the task geometry. The ideal effector is used to model the manipulator, and the task geometry is modeled by the ideal surface, which is the locus of all positions accessible to the ideal effector. Models are also defined for the goal trajectory, position control, and force control.
Resumo:
This handbook was prepared for external examiners and for use in training workshops for newly appointed external examiners.